• Title/Summary/Keyword: Joule's heat

Search Result 58, Processing Time 0.026 seconds

Stability analysis of an uncooled segment of superconductor

  • Seol, S.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.8-12
    • /
    • 2017
  • If the part of the HTS magnet is exposed to the outside of the cryogenic coolant due to the fluctuation of the height of the cooling liquid or the vapor generation, the uncooled part becomes very unstable. In this paper, the unstable equilibrium temperature distribution of the uncooled part of a superconductor is obtained, and the maximum temperature and energy are calculated as a function of the uncooled length. Similar to the superconductor stability problem, the current sharing model was applied to derive the theoretical formula and calculated by numerical integration. We also applied a jump model, which assumes that joule heat is generated in all of the uncooled segment, and compares it with the current sharing model results. As a result of the analysis, the stable equilibrium state and the critical uncooled length in the jump model are not shown in the current sharing model. The stability of the conductors to external disturbances was discussed based on the obtained temperature distribution, maximum temperature, and energy.

Thermal characteristic of PRAM with top electrode (상부전극에 따른 상변화 메모리의 발열 특성)

  • Choi, Hong-Kyw;Jang, Nak-Won;Kim, Hong-Seung;Lee, Seong-Hwan;Mah, Suk-Bum
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.97-98
    • /
    • 2007
  • In this paper, we analyzed the reset current variation of PRAM device with top electrode using the 3-D finite element analysis tool. As thickness of phase change material thin film decreased, reset current caused by phase transition highly increased. Joule's heat which was generated at the contact surface of phase change material and bottom electrode of PRAM was given off through top electrode to which was transferred phase change material. As thermal conductivity of top electrode decreased, heating temperate was increased.

  • PDF

Analysis for Generation of Heat of Cubicle Eddy Current in A Hydroelectric Power Plant (수력발전소 큐비클 와전류에 의한 발열현상 분석)

  • Ok, Yeon-Ho;Lee, Eun-Chun;Shin, Gang-Wook;Hong, Sung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.431-433
    • /
    • 2000
  • The hydroelectric Power plant of the KOWACO have been establishing and operating a full scale electric power facility, doing the largest generation during the flood period of the summer season. When the huge capacity generator is run like the Chung-Ju's hydroelectric Power plant, the generator current per generator flows a great current estimated at 5,900 A. The bus bar of a great current flows in cubicle, owing to the bus bar current Eddy current is created around magnetic substance and a local heating phenomenon occurs due to Joule heat finally. a local heating phenomenon still exists the danger of safety accident due to contact and accompanies losses enough to healing capacity inevitably. this study applies and examines related theory and numerical formula about the heating cause of a great current & enforces technical verification about the method of heating reduction previous managed at the site.

  • PDF

A study for gas distribution in separators of molten carbonate fuel cell (용융 탄산염 연료전지의 분리판 내 연료 분배 해석)

  • Park, Joonho;Cha, Suk Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • A channel design which is closely related with the mass transport overpotential is one of the most important procedures to optimize the whole fuel cell performance. In this study, three dimensional results of a numerical study for gas distribution in channels of a molten carbonate fuel cell (MCFC) unit cell for a 1kW class stack was presented. The relationship between the fuel and air distribution in the anode and cathode channels of the unit cell and the electric performance was observed. A charge balance model in the electrodes and the electrolyte coupled with a heat transfer model and a fluid flow model in the porous electrodes and the channels was solved for the mass, momentum, energy, species and charge conservation. The electronic and ionic charge balance in the anode and cathode current feeders, the electrolyte and GDEs were solved for using Ohm's law, while Butler-Volmer charge transfer kinetics described the charge transfer current density. The material transport was described by the diffusion and convection equations and Navier-Stokes equations govern the flow in the open channel. It was assumed that heat is produced by the electrochemical reactions and joule heating due to the electrical currents.

  • PDF

Prediction of liquid amount in hydrogen liquefaction systems using GM refrigerator (GM냉동기를 이용한 수소액화 시스템의 액화량 예측)

  • 박대종;장호명;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.349-358
    • /
    • 1999
  • Thermodynamic cycle analysis has been performed to maximize the liquid amount for various hydrogen liquefaction systems using GM(Gifford-McMahon) refrigerator. Since the present authors' previous experiments showed that the liquefaction rate was approximately 5.1mg/s in a direct contact with a commercial GM refrigerator, the purpose of this study is to predict how much the liquefaction rate can be increased in different configurations and with improved heat exchanger performance. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the single-stage GM precooled L-H(Linde-Hampson) system, the two-stage GM direct contact system, the two-stage GM precooled L-H system and the two-stage helium GM-JT (Joule-Thomson) system. The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, when the two-stage precooling is employed and the effectiveness of heat exchangers approaches to 99.0%. It is concluded that the liquefaction rate is limited mainly by the cooling capacity of the current GM refrigerators and a larger scale of hydrogen liquefaction is possible with a greater capacity of cryocooler at 60-70 K range.

  • PDF

Thermodynamic Analysis of Hydrogen Lquefaction Systems Using Gifford-McMahon Cryocooler

  • Chang, Ho-Myung;Park, Dae-Jong;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.39-50
    • /
    • 2000
  • Thermodynamic cycle analysis is presented to estimate the maximum liquefaction rate of hydrogen for various systems using a Gifford-McMahon(GM) cryocooler. Since the present authors` previous experiments showed that the gaseous hydrogen was liquefied approximately at the rate of 5.1 mg/s from the direct contact with a commercial two-stage GM refrigerator, this study has been proposed to predict how much the liquefaction rate can be increased in different configurations using the GM cooler and with improved heat exchangers. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the Linde-Hampson(L-H) system precooled by single-stage GM, the direct-contact system with two-stage GM, the L-H system precooled by two-stage GM, and the direct-contact system with helium GM-JT (Joule-Thomson). The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, even though the highly effective heat exchangers may be employed. It is concluded that the liquefaction rate is limited mainly because of the cooling capacity of the commercially available GM cryocoolers and a practical scale of hydrogen liquefaction is possible only if the GM cooler has a greater capacity at 70-100 K.

  • PDF

Electromagnetic characteristics of superconducting fault current limiters under the quenching (박막형 초전도 한류기의 퀜치상태의 전자기 특성)

  • Choi, H.S.;Chung, H.S.;Choi, C.J.;Lee, S.I.;Chung, S.B.;Oh, K.G.;Lim, S.H.;Han, B.S.;Chung, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.415-417
    • /
    • 2003
  • we analyzed the electromagnetic behavior of a superconducting fault current limiter (SFCL) under the quench state using FEM. The analysis model used in this work is 5.5 KVA meander-line type SFCLs. Meshes of 3,650 triangular elements were used in the analysis of this SFCL. Analysis results showed that the distribution of current density was concentrated to inner curved line in meander-line type-SFCL and the maximum current density was 14.61 $A/m^2$ and also the maximum Joule heat was 2,030 $W/m^2$ in this region. We think that the new and the modified structure must be considered for an uniform distribution of the electromagnetic field.

  • PDF

Quench Current Measurement of High Temperature Superconducting Coils Cooled by Conduction (전도냉각방식을 이용한 고온초전도 코일의 퀜치전류 측정)

  • Sohn, M.H.;Kim, S.H.;Baik, S.K.;Lee, E.Y.;Lee, J.D.;Kwon, Y.K.;Kwon, W.S.;Park, H.J.;Moon, T.S.;Kim, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1252-1254
    • /
    • 2005
  • High Tc superconducting(HTS) model coil was prepared. Current-voltage(I-V) characteristic curves of model coil, sub-coils and joints were investigated at 77K and other some temperatures. Cooling system for characteristics measurement was made by using G-M cryocooler. At 77K, quench current(Iq) of model coil was 43.9A and the lowest Iq of sub-coils was 38.8A. At 55K, sub coil SP #06 was 106A. So, 100A was chosen as the operating current at 55K with margin. Joule heat of model coil was 0.65W at 100A, operating current and 58K. Joint resistances between sub-coils were about $70n{\Omega}$ at 77K and about $30n{\Omega}$ at 55K.

  • PDF

Study on IPT Characteristics of LSR / Nano Silica Composites for HVDC (HVDC용 LSR/Nano Silica Composites의 IPT특성 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • Only the power is converted from AC to DC, in accordance with IEC 60587 based test method, in order to develop the LSR(Liquid Silicone Rubber) insulator material for HVDC, the experiment of Inclined Plate Tracking and Erosion Resistance was conducted. A contaminant (2.5 mS/cm: ammonium chloride) was applied at a rate of 0.3 ml/min and a voltage of ${\pm}3.5kV$, and was evaluated on the basis of 60 mA/2s. The samples were prepared by dispersing LSR/Nano silica_25wt% Composites in LSR. The erosion phenomena of surface discharge and tracking due to DC polarity and negative polarity were measured by image, leakage current maximum and thermal camera. The thermal imaging camera measured the surface temperature generated by the joule heat of the leakage current due to the drying discharge and the conductive current. After the measurement, the tracking and erosion mechanisms were evaluated for erosion weight, erosion depth and erosion length. Positive and negative polarity of LSR/Nano Silica_25wt% composite Tracking and erosion results show that positive polarity is more severe than negative polarity.

Characteristics of ITO/Ag/ITO Hybrid Layers Prepared by Magnetron Sputtering for Transparent Film Heaters

  • Kim, Jaeyeon;Kim, Seohan;Yoon, Seonghwan;Song, Pungkeun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.807-812
    • /
    • 2016
  • Transparent film heaters (TFHs) based on Joule heating are currently an active research area. However, TFHs based on an indium tin oxide (ITO) monolayer have a number of problems. For example, heating is concentrated in only part of the device. Also, heating efficiency is low because it has high sheet resistance ($R_s$). To address these problems, this study introduced hybrid layers of ITO/Ag/ITO deposited by magnetron sputtering, and the electrical, optical, and thermal properties were estimated for various thicknesses of the metal interlayer. The $R_s$ of ITO(40)/Ag/ITO(40 nm) hybrid TFHs were 5.33, 3.29 and $2.15{\Omega}/{\Box}$ for Ag thicknesses of 10, 15, and 20 nm, respectively, while the $R_s$ of an ITO monolayer (95 nm) was $59.58{\Omega}/{\Box}$. The maximum temperatures of these hybrid TFHs were 92, 131, and $145^{\circ}C$, respectively, under a voltage of 3 V. And that of the ITO monolayer was only $32^{\circ}C$. For the same total thickness of 95 nm, the heat generation rate (HGR) of the hybrid produced a temperature approximately $100^{\circ}C$ higher than the ITO monolayer. It was confirmed that the film with the lowest $R_s$ of the samples had the highest HGR for the same applied voltage. Overall, hybrid layers of ITO/Ag/ITO showed excellent performance for HGR, uniformity of heat distribution, and thermal response time.