• Title/Summary/Keyword: Joint velocity control

Search Result 200, Processing Time 0.024 seconds

Robust Control of Robot Manipulators using Visual Feedback (비젼을 이용한 로봇 매니퓰레이터의 강인 제어)

  • Ji, Min-Seok;Lee, Yeong-Chan;Lee, Gang-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.247-250
    • /
    • 2003
  • In this paper, we propose a robust controller for motion control of n-link robot manipulators using visual feedback. The desired joint velocity and acceleration is obtained by the feature-based visual systems and is used in the joint velocity control loop for trajectory control of the robot manipulator. We design a robust controller that compensates for bounded parametric uncertainties of robot dynamics. The stability analysis of robust joint velocity control system is shown by Lyapunov Method. The effectiveness of the proposed method is shown by simulation results on the 5-link robot manipulators with two degree of freedom.

  • PDF

Robot Manipulator Joint Velocity Control Using Image-based Visual Servoing (이미지 기반 시각 구동을 이용한 로봇 매니퓰레이터의 관절 속도 제어)

  • Lee, Young-Chan;Jie, Min-Seok;Lee, Kang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.134-137
    • /
    • 2002
  • This paper presents a robot manipulator kinematic motion control scheme based on velocity feedback loop. The desired joint velocity is obtained by the feature-based visual servoing and is used in the joint velocity control loop system for trajectory control of the robot manipulator. The asymptotic stability of the closed loop system is shown by the Lyapunov method. Effectiveness of the proposed method is shown by simulation and experimental results on a robot manipulator with two degree of freedom.

  • PDF

Adaptive control of flexible joint robot manipulators (유연성 관절 로봇 매니퓰레이터 적응 제어)

  • 신진호;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.260-265
    • /
    • 1992
  • This paper presents an adaptive control scheme for flexible joint robot manipulators. This control scheme is based on the Lyapunov direct method with the arm energy-based Lyapunov function. The proposed adaptive control scheme uses only the position and velocity feedback of link and motor shaft. The adaptive control system of flexible joint robots is asymptotically stable regardless of the joint flexibility value. Therefore, the assumption of weak joint ealsticity is not needed. Also, joint flexibility value is unknown. Simulation results are presented to show the feasibility of the proposed adaptive control scheme.

  • PDF

An Optimal Trajectory Planning for Redundant Robot Manipulators Based on Velocity Decomposition (속도분리를 이용한 여유자유도 로봇의 최적 경로계획)

  • 이지홍;원경태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.836-840
    • /
    • 1999
  • Linear motion and angular motion in task space are handled separately in joint velocity planning for redundant robot manipulators. In solving inverse kinematic equations with given joint velocity limits, we consider the order of priority for linear motion and angular motion. The proposed method will be useful in such applications where only linear motions are important than angular motions or vice versa.

  • PDF

Effects of Induced Fatigue of Ankle Joint Muscle on the Capability and Recovery of Postural Control during Single-Leg Stance (발목 관절 근육의 유도된 피로가 외발서기 자세제어 능력과 회복에 미치는 영향)

  • Youm, Chang-Hong;Kim, Tae-Hyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2012
  • The purpose of this study was to investigate how induced fatigue of the ankle joint muscles affects the capability and recovery of postural control during single-leg stance in healthy adults. The study population included 22 randomly recruited men and women. Postural control was performed on single-leg stance with eyes open. Ankle joint muscle was fatigued by repeated heel raises. According to the results of this study, for the anteroposterior variables, both men and women showed significantly increased center of mass velocity and decreased center of pressure 95% edge frequency immediately after fatigue. For the mediolateral variables, both men and women showed significantly increased center of mass velocity and decreased center of pressure 95% edge frequency immediately after fatigue. For the total variables, both men and women showed significantly increased center of mass averaged-velocity immediately after fatigue, and also, the center of pressure 95% confidence ellipse area significantly increased in women. Postural control variables were not significantly different for men and women at any time (Pre, P0, P10, and P20). In conclusion, the gender does not affect the capability and recovery after induced fatigue of ankle joint muscles. The effect of fatigue found for the anteroposterior and the mediolateral variables in both men and women. Furthermore ankle joint muscle fatigue led to change of postural control strategy from an ankle joint strategy towards a hip joint strategy. These changes are believed to damage postural control. The ankle joint muscle recovered from fatigue within 20 min during single-leg stance.

Robust control of a robot manipulator by means of sliding observers

  • Iwai, Z.;Mano, K.;Ohiomo, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1075-1079
    • /
    • 1989
  • In this paper a robust control design is developed for the control of a multi-joint manipulators using sliding observer. The sliding observer is introduced to estimate the angular velocity of the links under the disturbance input. The feedback control is designed by the use of the estimated value of the angular velocity .theta.. The VSS control laws is introduced to ensure the robustness concerning the disturbance inputs. To illustrate the effectiveness of the proposed method, a computer simulation is performed for a two-joint manipulator.

  • PDF

Fuzzy -Logic Controller for Flexible-Link Manipulators (유연 링크 로봇의 제어)

  • 강재용;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.342-345
    • /
    • 1995
  • This paper describes the design process and the experimental results of a fuzzy logic controller to control the tip position of a fixible-link manipulator, directly driven by a AC motor, with a large payload. The joint angle fuzzy logic controller is designed without a costly nonlinear system analysis of the flexible manipulator and the AC motor drive system. The state variables for the fuzzy logic controller are joint angle, joint velocity, link deflection, and link deflection velocity. The simulation and experimental results show that the joint position control is not satisfactory when the controller is designed under the assumption of no link flexibility and that stable joint position control and link vibration suppression can be cahieved with the fuzzy logic controller suggested in this paper.

  • PDF

Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation (자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어)

  • 이세한;강재관;김용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

The Effect of Ankle Joint Taping Applied to Patients with Hemiplegia on Their Gait Velocity and Joint Angles (편마비 환자의 발목관절에 테이핑 적용이 보행속도와 관절각도에 미치는 영향)

  • Lee, Min-Seok;Lee, Joon-Hee;Park, Seung-Kyu;Kang, Jeong-Il
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.157-162
    • /
    • 2012
  • Purpose: This study is to identify the effect of Ankle Joint Taping applied to patients with chronic hemiplegia on their gait velocity and joint angles. Methods: We randomly extracted a clinical sample from 30 patients with hemiplegia resulting from stroke and classified them into two groups of a control group including 15 patients offered a regular therapeutic exercise and a test group including 15 patients offered taping. We also conducted the comparative analysis and pretest of the affected ankle joint angles by the normal characteristics of all subjects, Time to up and go test (TUG), 3D movement analyzer before the intervention. We applied taping to a test group for eight hours a day, five days a week during two weeks and conducted the comparative analysis of the gait velocity and the affected ankle joint angles by a comparison between and within two groups of before and after the intervention by conducting a posttest after the intervention. The result is as followings. Results: It indicated that there was a significantly decreased time with the increased gait velocity that a test according to a result of comparing the gait velocity within two groups (p<0.05). It indicated that there was a significantly increased angle in a comparison within two groups of test that inversion angle of a control group according to a result of comparing the ankle joint angles by 3D movement analyzer within groups (p<0.05). Conclusion: We found that TUG will help patients walk independently because it met a test group's need in the change of the gait velocity between two groups by recording less than 14 seconds which is the standard of using assistive aids and also found that ankle joint taping will help the joints prevent their function change considering that a control group showed an increased inversion angle in the change of the ankle joint within two groups.