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Abstract

This paper presents an adaptive control scheme for flexible
joint robot manipulators. This control scheme is based on the
Lyapunov direct method with the arm energy-based Lyapunov
function. The proposed adaptive control scheme uses only the
position and velocity feedback of link and motor shaft. The
adaptive control system of flexible joint robots is asymptoti-
cally stable regardless of the joint flexibility value. Therefore,
the assumption of weak joint elasticity is not needed. Also,
joint flexibility value is unknown. Simulation results are pre-
sented to show the feasibility of the proposed adaptive control

scheme.

1 Introduction

Almost all industrial robots exhibit joint flexibility due to me-
chanical compliance of their gear boxes such as harmonic drives.
Especially, in case of the direct-drive robot, the actuators are
directly connected links and the robot operates at high speed.
Due to these effects, the robot introduces elastic deformations
in the joints. Therefore, joint flexibility should be taken into
account in the modeling and control if high performances are
to be achieved. When we assume that the joint elasticity may
be modeled as a linear torsional spring (1], the links are not
directly actuated by the external forces/torques due to this
spring. Therefore, the design of control algorithms is more dif-
ficult than that of the rigid robot.

When the manipulator parameters are supposed to be ex-
actly known, many approaches have been proposed and the
stabilization and tracking problem is solved very well. These
methods are based on feedback linearization [2][3][4], singular
perturbation theory [5] and on the idea of integral manifold [6].

When the parameters are unkown, the design of control

scheme is more difficult. In the case of feedback linearization,
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this technique can provide robustness to parameteric uncer-
tainty only if the link position, velocity, acceleration and jerk
are available for feedback. The computational burden of this
approach is greater than the computed torque method for rigid
robots. In order to overcome the measurement problem of the
link acceleration and jerk, the concept of integral manifold has
been proposed [6][7]. But the chief drawback to this approach is
its lack of robustness to parameteric uncertainty. On the other
hand, an adaptive control algorithm based on singular pertur-
bation techmique [5] is simpler than other approaches. But in
this case, the assumption of weak joint elasticity is required.
Elsewhere, adaptive control algorithms have been presented in
8lel.

In this paper, by properly selecting the Lyapunov function,
we presents an adaptive control scheme to be robust to pa-
rameteric uncertainty. This control scheme doesn’t require the
measurement of link acceleration and jerk, that is, uses only the
position and velocity feedback of link and motor shaft. Here,
the joint flexibility is unkown and is not assume to be weak
value. Also, Asymptotic stability is guaranteed regardless of
the joint flexibility value. Simulation results are shown to ver-
ify the validity of the proposed control scheme. Conclusions

and further study are presented to obtain better results.

2 Control of Flexible Joint Robots

The dynamic equation of flexible joint manipulators is as fol-

lows.

D(q)i+ C(g,9)§ + G(q) + K(q - gm)
Dmim + Bm - K(q - qm)

0 m
T 2

where an n-link manipulator becomes a 2n degrees of freedom
system.
geER" displacement vector of link joint

angles



gm ER" displacement vector of motor rotor
angles
D( q) E mnxn

clq, q) € jnxn

inertia matrix of link
Centrifugal and Coriolis terms

matrix of link

G(q) e ™ vector of gravity
D, € R**" constant inertia matrix of motor
B, € R"*" constant damping and friction
matrix of motor
K e gnen diagonal positive definite
joint stiffness matrix of the
rotor shafts
reR” vector of input torque

From the above dynamic model, we can find the following
properties which is needed to design a control algorithm.
Py,) The link inertia matrix D(g) is symmetric and positive
definite, always invertible.
P;) The matrices D and C are not independent. by a proper
definition of C(g, ¢}, the matrix D —2C is skew-symmetric [10].
Py) The individual terms of equation (1) can be represented by
a linear relationship between a properly selected set of unknown
manipulator parameters (i.e. link masses, moments of inertia,
etc) and known functions of the generalized coordinates. In

other words,

D(g)§+C(g,4)d + G(9) =Y (§,d,9)P (3)

where Y (§,d,q) € R™" is called the regressor matrix of known
functions, and P € R" is a vector of unknown constant param-
eters.

Now, let us derive the desired motor trajectory from the
equation (2). Let gq4(t) € C* denote the desired link trajec-
tory. Here, q4,44,d4, 4", ¢a'*) are all bounded and continu-
ously differentiable. The desired motor trajectory may now be

computed as follows:

gma(t) = K7'Y(d4,44,94)P + a(t) 4)
gma(t) = K7V (44,44, 20) P + dalt) (5)
dma(t) = K7V (§a, 44, 0a)P + dalt) (8)

When the manipulator parameters are exactly known, we
now design a controller based on Lyapunov stability. First of
all, let us define the several useful error signals.

The link position error is

e=qi—¢q €ER" )
The motor rotor position error is
€m = md — dm eR” (B)
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Here,

©)

ca:( ¢ ) e R
€m

We define a new extended error as follows:

— 8 — 4 2n
sa—( )—ea—f-k.,ea eR
Sm

Where k, = diag(ke1,kez) € R¥"®® i constant gain matrix,
ie, kyp > 0€ R kg > 0€ R,

Thus, the extended link error is

(10)

s=é+kjge €R" (11)
The extended motor rotor error is
8m = em + kyzem ER" (12)

The modified velocity signal and acceleration signal are defined

as
s+ ¢ ja + ki
e = n - q - .qd+ v1€ (13)
Im 8m + qm gmd t+ kuz Em
. . i1+ Koy é
N A Y B (14)
Im md + kozém

Now, consider the following Lyapunov function candidate,
which may be so called the extended error energy, similar to the

energy of the trajectory deviating from the desired trajectory

1 1 1t ¢
V = -s"D(q)s+ =85, Dinn + = / (s am)TdtK/ (8~ 8m)dt
2 2 2Jo 0
(15)
We will derive the controller to make V () < 0.
First, let’s find the time derivative of V. Here, simply rewrite
D(q),C(9,9) and G(q) as D,C and G respectively.

V= sTDé+%sTba+sszém+(s—am)TK/;(s-s,,.)dt (16)
by the property that (D — 2C) is skew-symmetric,
V = a"D(5 - §)+87Cs + 6% Dn(im — Gim)
+oTK /; ‘(s = sm)dt — LK fo ‘(o - am)dt (17)

by the dynamic model (1) and (2) and some manipulations,

Vo= D0+ Ci+G+ Kl(q— am) + [ (o sm)d])
+80.{Dmtim + Bmgm
+K(qm —q) — _/:(s — 8m)dt] — 1} (18)

We now define a following control input

. . ¢
r = Dt + B+ Kl(am = 0) = [ (o~ sm)di]
0
Sm 8T
tka28m + ——5(YaPs + ka18) (19)
flamll
where

Ya(4a,94:94,4, 9, 4m) Pa =

D(g)n+ Cla,4)n+G(g) + K{(g — qm) + /:(s — am)dt] (20)



P, is the parameters vector of the manipulator. kg3 > 0 € R"**"
and kg3 > 0 € R™*" are constant diagonal positive definite
matrices, respectively. We assume that ||s,,||> > € > 0, where
€ is a suitably small positive number determined to guarantee
the numerical stability of the simulation.

Now, substituting the equation (19) into (18), V is finally as
follows

(21)

where kg = diag(k41, ka2) € R?*?" is constant positive definite

V=—sTkss - az,;k.ﬂsm = —sfkdsa

matrix.

Therefore, V is negative definite and thus s, s,, converge to
zero asymptotically as time goes to infinity. Hence, ¢, ¢, e,, and
ém converge to zero as time increases to infinity. The above
controller is useful only if ||s,,[|® > ¢ > 0 because r diverges to
infinity as ||8;||® goes to zero.

Now, let’s consider the case when ||s,[)* < e.

Notice as ||sy|l* goes to zero, the structure of the system is
reduced and thus the Lyapunov function V'(t) resembles that

of rigid robots. We design the second stage controller using this
property. The dynamic equations (1) and (2) can be rewrited

as the following equation:

7= D(q)§ + C(¢,4)4 + G(g) + Dnim + Bmim (22)

Before the design of the second stage controller, let us define

the following region where ém; = §ndi — Gmi as

Bminli] € émi € pmazlil for 1=1,2,...,n (23)

where n is the number of links and pupinft], #maz[s] are real
scalars. We also define vector A = (Ay,...,A,)T € R" as

A = %Dmi{sg"(si)(l‘min ['] — Mmaz [']) + Bmin [‘} + Bmaz [’]} (24)

for 1 =1,2,...,n

where
+1 ifs; >0
sgn(si)=1¢ -1 ifs; <0 (25)
0 ifg=0

We can write this relation, i.e., D{(q)5 + C(q,¢)n + G(q) =
Y (§a, 4, 94,9, 9) P-

By the same procedures as above, we will design the second
stage controller. Let us now consider the following Lyapunov
function candidate
(26)

Hence,

14

1 -
T Dé+ EsTDa (27)

= oTD(n—§)+s7Cs (28)
= &"(Di+Cn+G+ Dmim+ Bmim —17)  (29)

We define the second controller as:
r=YP+ Dypgmi + Bmim + kps — A (30)

where kp € R"*" is constant diagonal positive definite matrix.
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Substituting this controller into equation (29),

V = §T(~Dmém+ A kps) (31)
= —sTkps— sT(D,,.é',,. - A) (32)

n
= —sTkD.? - Zsi(Dmi.émi - /\:) S 0 (33)

i=1

14 is negative definite. Thus, s converges to zero with time
going to infinity, consequently, this implies that both é(t) and
e(t) converge to zero as time goes to infinity.

We proposed a control scheme when the parameters are
exactly known. This controller only requires the mesurement
of ¢,4,qm and g¢,,. The structure of the proposed controller
is composed of two stage controllers as magnitude of | sm/*.
Namely, when “s,,.”z > € > 0, we used the first stage controller
(19). On the other hand, when ||s,,||* < €, we should select the
second stage controller (30).

When the parameters are unknown, the design of an adap-

tive controller will be addressed in the next section.

3 Adaptive Control of
Flexible Joint Robots

As was presented in the previous section, we proposed the two
stage controller. The approach of the previous section can be
also used to design an adaptive controller as the dynamic pa-
rameters of the manipulator are unknown.

Here, because the parameters are unknown, we cannot di-
rectly compute the desired motor trajectory using equation
(4)(5)(6). Therefore, based on the estimated value of the pa-
rameters, we may obtain an estimate of the desired motor po-

sition as §mga using equation (4). That is,

dma(t) = K'Y (da, 42, 92) P + qa(t). (34)

where P is the estimate of the parameters.
Here, the definition of the motor rotor position error should be

modified as the estimate of motor rotor position error. Namely,

em(t) = Gma(t) —gm(t) €R" (35)

Using the approach of the previous section, the following theo-

rem can be stated.

Theorem 1

The flexible joint robot system given by the dynamic model (1)
and (2), with the following two stage control and adaptation
laws, is asymptotically stable and thus the tracking errors con-
verge to zero as time goes to infinity.

1.The first stage controller : when || |* > ¢ > 0

o Control law : when |{s,,||> > ¢ > 0 for a scalar ¢

N t
Dmﬁm + qu'm + Km[(Qm - <I) - /0 (3 - sm)dt]

T . . t
PP+ Kil(g— gm) + /0 (o~ sm)dt]

8 8

llomll

+kazém +



+ka18} (36)

where

V{4, 44,94, 4, ) P
D(q)% + C(q,)n + G(g)

=
9

i

(37)

where D, C and G are the estimates of D, C and G, respectively.
Also, K, and K; are the estimates of K corresponding to the
different update laws.

» Adaptation law

E

where ¢ = Pg — ISE is extended parameters deviation vector,

-TY[s, (38)

. . 8
T is constant diagonal positive definite matrix, s, = ,

8m
and
f(D-DH+(C~-Cn+(G~G)=F(P-P)
and Y = P — P, then
. Yo+ (K - Bi)(g— qm + f(8— 8m)dt
Vs (5 = By(a—am + filo = om) | oo
(K — Km)(gm — ¢ — fo(s ~ 8m)dt)
2. The second stage controller : when [[8,[* < €
e Control law
7=YP+ Dpndpma + Bmim + kps ~ A {40)
where ) is given in equation (24).
o Adaptation law
N GT (41)

where A is constant diagonal positive definite matrix.

Proof of Theorem 1

In order to prove the Theorem 1, consider the following Lya-

punov function candidate based on equation (15):

1 1
Va -Z—sTD(q)a + Esg,lesm

17t t
+§/o (s — 8m)TdtK/; (s — sm)dt

+%¢§r-1¢3 (42)

The time derivative of V' is computed according to equation

(18).

. t
Vo = oT[Dsi+Cii+G+K(g— am) + K[) (8 — om)dt]

+8% [ Dyt + Bmfim — B8
t
YE(qm—-q) - K /0 (6 — om)dt — 7]

+6LT g5 (43)

Substituting the proposed first control input (36) into equation
(48),
va

oT((D~ D)y +(C-Cn+(G-G)
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+(K -~ Ki)(g — gm + /:(s ~ o) dt)]

+8[(K — Km)(qm ~ 4 - /‘(a ~ 8m)dt)]
(4]

—adele - 3£;kd23m + d;gr_ld)g (44)
Let
Yier = (D-D)yi+(C-Cm+(G-6)
. t
+HE - B)[(q — gm) + /0 (8 - sm)dt] (45)
n t
Ymdm = (K - Kn)l(gm ~ 0) - /0 (s — sm)dt]  (46)
Thus,
Va = 3TYl¢l + 3:.,Ym¢m - sdels - sakdzsm
+¢5I ¢p
= o Yg¢g — 6  kars — G?nkdzﬂm + 4.%1‘“1455 (47)
Here, let
Yig
Yeor = (48)
( Ymbm )

Now, the first stage adaptation law (38) is substituted into (47).
In the end,

Vo= ~8Tkqs - sﬂkdzsm (49)

If }|8m||* > € > O, we use the first stage control and adaptation
law (36)(38). Then, V, is negative semi-definite and The system
given by equation (1) and (2) is asymptotically stable with all
the signals in the system remaining bounded. Here, Asymptotic
stability is guaranteed regardless of the joint flexibility value.
Next, a8 ||8m||* —+ 0, the reduced dynamic model is given
in equation (22). In order to verify the second control and adap-
tation law, the following Lyapunov function candidate based on

equation (26) is presented as:

_ 1 1
Vo= 3" Dlg)s + ;TAy (50)
The time derivative of V is
Vo = oTDs+ %sTbs +¢TA 1y (51)
= &7(Dn + Cn+ G + Dmim + Bmim ~ 7)
+TAly (52)

Here, we substitute the second control law (40) into equation
(52).

‘;',, = 6TV — 87T Dopém — 8 kps + 8T A+ ¢TA (53)
Now, let us apply the second stage adaptation law (41).

Vo = 8 (~Dmém+ A —kps) (54)

= ~&Tkps — 87 (Dmém — A) (85)

= —sTkps— Z":S,'(Dmi.émi -X)<0 (56)

=1

l;/, is negative semi-definite. Thus, s converges to zero with
time going to infinity, consequently, thia implies that both é(t)



and ¢(t) converge to zero as time goes to infinity. If [|em/|* < €,
we should switch the control mode from the first stage to the
second stage. The second controller make the steady state error
still remaining in the end of the first control stage converge to
zero.

Therefore, proof of Theorem 1 is complete and also shows

the feasibility of the two stage adaptive control. m}

4 Simulation Results

In order to verify the validity of the two stage adaptive con-
troller proposed in the previous section, computer simulation
has been performed on a single link flexible joint robot ma-
nipulator with one revolute joint. The dynamic model of a

single-link flexible joint robot is as follows:

0 (57)

(58)

Ji§ + Cig + hsin(q) + K(q — gm)
Jmdm + Bmgm — K(q - Qm)

Il

where h = %myL.
The simulation results are composed of two cases, that is, reg-
ulation and tracking control problem. Numerical parameters

for the manipulator are given in Table 1.

Table 1: Parameters for a single-link flexible joint manipulator

Parameters Symbol | Value

Stiffness K 15

Inertia of link Ji 0.2
Inertia of motor rotor Jm 0.05

Gravity g 9.8

Length of link L 0.5

Mass of link 2.5

Co. and Cen. terms of link Cy 0.5
Friction term of motor By, 0.05

In the Table 1, all the values have SI units. 'Co.’ represents
’Coriolis’ and ’Cen.’ represents *Centrifugal’. .

In the simulation, unknown parameters are K, Ji, C;, h, and
known parameters i8 Jp,, By,. It is assumed that the flexible
joint manipulator is initially at rest. That is, ¢(0) = gm(0) =
0,4(0) = gm(0) = 0,§(0) = §m(0) = 0. The sampling time is
0.01 seconds. € i8 0.1, fpmin i8 -1.0 and ppgz 18 1.0.

The results for the regulation problem are given in Figure
1.1 and 1.2. In this regulation control, the desired link position
is g4 = 1(radian). On the other hand, the simulation results
for the tracking control problem are shown in Figure 2.1 ~ 2.4.
In this tracking control, the desired link trajectory is g4(t) =
cos(§t) (radian).

65 Conclusions

We proposed two stage adaptive control scheme by properly

selecting the Lyapunov function similar to total energy of the
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overall system. During the course of proof of Lyapunov stabil-
ity, the terms divided by ||s;||® appeared. Hence, the control
scheme was separated into two and we presented two stage con-
trol alogorithms as the magnitude of ]]s,,,“z. From the proposed
control scheme, acceleration an jerk measurements of link and
motor are not needed and only position and velocity feedback
signals are required to update the control input. Also, Asymp-
totic stability is ensured regardless of the joint flexibility value.
The wind-up phenomenon due to the integrator in the pro-
posed controller should be taken into account in the practical
implementation of this controller.

Now, the ideas that merge two stage control algorithms into
only one control algorithm and the develoments of the exact
estimation processes are problems which may be chiefly handled

in the further study.
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Figure 1.2 The link and motor rotor position error.

Tracking : desired and actual link trajectory (rad)
T

T
desired trajectory
actual trajctory

|

10

1
(3%

15

time(sec)
Figure 2.1 Tracking : The desired and actual
link trajectory.
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Figure 2.2 The estimate of desired motor rotor
trajectory and the actual trajectory.
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Figure 2.3 The link and motor rotor position error.
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Figure 2.4 The adaptation process for J; and Ci.



