• Title/Summary/Keyword: Joint transfer

Search Result 350, Processing Time 0.023 seconds

Component based moment-rotation model of composite beam blind bolted to CFDST column joint

  • Guo, Lei;Wang, Jingfeng;Wang, Wanqian;Ding, Zhaodong
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.547-562
    • /
    • 2021
  • This paper aims to explore the mechanical behavior and moment-rotation model of blind bolted joints between concrete-filled double skin steel tubular columns and steel-concrete composite beams. For this type of joint, the inner tube and sandwiched concrete were additionally identified as basic components compared with CFST blind bolted joint. A modified moment-rotation model for this type of connection was developed, of which the compatibility condition and mechanical equilibrium were employed to determine the internal forces of basic components and neutral axis. Following this, load transfer mechanism among the inner tube, sandwiched concrete and outer tube was discussed to assert the action area of the components. Subsequently, assembly processes of basic coefficients in terms of their stiffness and resistances based on the component method by simplifying them as assemblages of springs in series or in parallel. Finally, an experimental investigation on four substructure joints with CFDST columns for validation purposes was carried out to capture the connection details. The predicted results derived from the mechanical models coincided well with the experimental results. It is demonstrated that the proposed mechanical model is capable of evaluating the complete moment-rotation relationships of blind bolted CFDST column composite connections.

Kinematical Analysis of Angle and Angular Velocity of the Body Segment on Spike in Volleyball (배구 스파이크시 신체분절의 각도와 각속도에 대한 운동학적 분석)

  • Cho, Phil-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.191-199
    • /
    • 2007
  • This study was conducted to examine the biomechanical characteristics of open spike in the volleyball to improve the technique of the volleyball spike. The subjects were six male college and high school athletes. The motions of volleyball spike were filmed by using two Sony VX 2000 Video Cameras. The mechanical factors were angle and angular velocity of body segments in the upper and the lower limbs. The conclusions were as follows; 1. The angle of the shoulder joint of the skilled showed larger than that of the unskilled in impacting of the volley ball spike. 2. The angle of the elbow joint of the skilled showed larger than that of the unskilled in impacting of the volley ball spike. 3. The angle of the wrist joint of the skilled showed smaller than that of the unskilled in impacting of the volley ball spike. 4. The angle of the hip joint of skilled showed larger than that of unskilled in impacting of the volley ball spike. 5. The angle of the knee joint of the skilled and the unskilled showed same in take off and impacting of the volley ball spike, and that of the skilled showed smaller than that of the unskilled in take-off touchdown and touchdown after impact of the volley ball spike. 6. The angle of the ankle joint of skilled showed larger than unskilled in take-off of the volley ball spike. 7. The angular velocity of the shoulder joint, elbow joint, wrist joint of the skilled showed faster than that of the unskilled in impacting of the volley ball spike. Taken together the result of them, I have come to conclusion that knee joint angle in touchdown of the take off should be decreased and knee joint angle in take off should be increased, and then stability of the take off should be made and, and that extension of the elbow joint should be made and wrist joint angle decreased and shoulder and hip joint angle increased, and then C.O.G of the arm and hand should be positioned ahead C.O.G of the body in impacting for effective impact of the spike, and that the transfer of the angular velocity of body segments for effective impact of the spike make from the proximal segment to the distal segment at spike in volleyball.

THE USE OF A PEDICLED TEMPORAL MUSCLE AND FASCIA FOR TREATMENT OF THE TMJ ANKYLOSIS (악관절 강직증 치료에 있어 측두근 및 근막의 이용)

  • Lee, Chul-Woo;Yeo, Hwan-Ho;Kim, Young-Gyun;Lee, Hyo-Bin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.15 no.1
    • /
    • pp.11-20
    • /
    • 1993
  • Bony ankylosis is an intraarticular condition where there is fusion of the bony surfaces of the joint : The condyle and the glenoid fossa. It occurs in both children and adults, unfortunately more frequently in the former, in whom early recognition and correction is particularly critical. Trauma is well proven to be the predominant cause of TMJ ankylosis. Infection, rheumatoid arthritis and neoplasm are another, significant cases of TMJ ankylosis. The necessity for using an interpositional material to prevent TMJ reankylosis has been widely discussed and many interpositional materials have been used, including temporal muscle and fascia, dermis, auricular cartilage, fascia lata, fat, Lyo-dura, Silastic and various metals. The temporal muscle and fascia have been widely used pedicled flap for head and neck reconstruction. The use of a temporal muscle and fascia for reconstruction of the TMJ, particularly in cases of ankylosis is a very reasonable option. Its principle advantages are its autogenous nature, resilience, and proximity to the joint, allowing for a pedicled transfer of vascularized tissue into the joint area. However, the viability of temporal muscle and fascia is a critical question. We treated 2 cases of TMJ ankylosis with temporal muscle and fascia transfer and one case with temporal fascia. We obtained satisfactory results as to functional aspects.

  • PDF

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

  • Kim, Jae Woong;Jang, Beom Seon;Kim, Yong Tai;Chun, Kwang San
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.348-363
    • /
    • 2013
  • The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power $CO_2$ laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

A Study on the Survey of the Level of Book Saturation in Chungcheongbuk-do Libraries (충청북도교육청 공동보존자료관 설립에 대한 현장 인력의 인식 분석)

  • Younghee Noh;Bong-Suk Kang;Seung-Jin Kwak;Inho Chang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.4
    • /
    • pp.139-159
    • /
    • 2023
  • This study was conducted to review the feasibility of establishing a joint preservation library centered on the Chungcheongbuk-do Office of Education. To achieve this, a survey and perception survey were conducted. The research results suggest the following: Firstly, the functions of the Chungcheongbuk-do Office of Education joint preservation library should focus on the preservation of valuable materials, the development of Chungcheongbuk-do educational and school-specialized materials, and prioritizing the digitalization of important transferred materials and providing services to the general public. Secondly, when determining the criteria for materials to be transferred in the future, priority should be given to materials that require preservation in their original form and those that need media conversion. Thirdly, when considering the types of materials to be transferred in the future, the operational plan should primarily focus on monographs but also consider other types of materials. Fourthly, regarding ownership rights of materials during the transfer process, it is advisable to establish detailed transfer guidelines, including ownership rights, through discussions between the Chungcheongbuk-do Office of Education and individual libraries via the Joint Preservation Library Operating Committee.

Joint Inversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (II) - Verification and Application of Joint Inversion Analysis - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(II) - 동시역산해석기법의 검증 및 적용 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.155-165
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. Numerical analysis, theoretical model test, and field test were performed to verify the joint inversion analysis. Results from 2D, 3D finite element analysis were compared with those from the transfer matrix method in the numerical analysis. On the other hand, the difference of results from each inversion analysis was investigated in the theoretical model analysis. Finally, practical applicability of the joint inversion analysis was verified by performing field test. As a result, it is confirmed that considering dispersion information of each wave simultaneously prevents excessive divergence and improves accuracy.

Seismic resistance and mechanical behaviour of exterior beam-column joints with crossed inclined bars

  • Bakir, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.493-517
    • /
    • 2003
  • Attempts at improving beam-column joint performance has resulted in non-conventional ways of reinforcement such as the use of the crossed inclined bars in the joint area. Despite the wide accumulation of test data, the influence of the crossed inclined bars on the shear strength of the cyclically loaded exterior beam-column joints has not yet been quantified and incorporated into code recommendations. In this study, the investigation of joints has been pursued on two different fronts. In the first approach, the parameters that influence the behaviour of the cyclically loaded beam-column joints are investigated. Several parametric studies are carried out to explore the shear resisting mechanisms of cyclically loaded beam-column joints using an experimental database consisting of a large number of joint tests. In the second approach, the mechanical behaviour of joints is investigated and the equations for the principal tensile strain and the average shear stress are derived from joint mechanics. It is apparent that the predictions of these two approaches agree well with each other. A design equation that predicts the shear strength of the cyclically loaded exterior beam-column joints is proposed. The design equation proposed has three major differences from the previously suggested design equations. First, the influence of the bond conditions on the joint shear strength is considered. Second, the equation takes the influence of the shear transfer mechanisms of the crossed inclined bars into account and, third, the equation is applicable on joints with high concrete cylinder strength. The proposed equation is compared with the predictions of the other design equations. It is apparent that the proposed design equation predicts the joint shear strength accurately and is an improvement on the existing code recommendations.

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

The Process of the Interjoint and Intersegmental Coordination of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 인체관절과 분절사이의 협응 과정)

  • Yoon, Chang-Jin;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.179-189
    • /
    • 2008
  • The purpose of this study was to investigate interjoint and intersegmental coordination of lower segments in skill process. For the investigation, we examined the difference of resultant linear velocity of segments and angle vs angle graph. Novice subjects were 9 male middle school students who have never been experienced a taekwondo. We analyzed kinematic variables of Side Kick motion through videographical analysis. The conclusions were as follows. 1. Examining the graph of novice subjects' maximal resultant linear velocity of the thigh, shank, and foot segment, as it gets closer to the end of the training, the maximal resultant linear velocity in each segment increases which can be assumed to be a result of the effective momentum transfer between adjacent segments. 2 This research showed a sequential transfer from trunk, to thigh, and then to shank as it gets closer to the end of learning at intersegment angular velocity, and it also showed pattern of throwlike motion and pushlike motion. 3. In three dimension of flexion-extension, adduction-abduction and internal-external rotation of the thigh and shank segment, the angle-angle diagram of knee joint and of hip joint showed that dynamic change was indicated at the beginning of learning but stable coordination pattern was indicated like skilled subject as novice subjects became skilled.

A Test Procedure for Road Noise Evaluation (승용차의 도로면 소음 평가를 위한 시험절차 고찰)

  • 조영호;고강호;허승진;국형석;김찬묵;기지현;최윤봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.980-985
    • /
    • 2002
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual loading and find noise sources very easily. finally, the transfer function analysis is used to identify noise paths through the chassis system. However, all of the tests above mentioned must be performed to evaluate road booming noise. The objectives and the procedures of the tests are described in this paper. Also, the guideline for efficient road noise evaluation test can be found.

  • PDF