• 제목/요약/키워드: Joint stability

검색결과 883건 처리시간 0.02초

Dynamic three-dimensional shoulder kinematics in patients with massive rotator cuff tears: a comparison of patients with and without subscapularis tears

  • Yuji Yamada;Yoshihiro Kai;Noriyuki Kida;Hitoshi Koda;Minoru Takeshima;Kenji Hoshi;Kazuyoshi Gamada;Toru Morihara
    • Clinics in Shoulder and Elbow
    • /
    • 제25권4호
    • /
    • pp.265-273
    • /
    • 2022
  • Background: Massive rotator cuff tears (MRCTs) with subscapularis (SSC) tears cause severe shoulder dysfunction. In the present study, the influence of SSC tears on three-dimensional (3D) shoulder kinematics during scapular plane abduction in patients with MRCTs was examined. Methods: This study included 15 patients who were divided into two groups: supraspinatus (SSP) and infraspinatus (ISP) tears with SSC tear (torn SSC group: 10 shoulders) or without SSC tear (intact SSC group: 5 shoulders). Single-plane fluoroscopic images during scapular plane elevation and computed tomography (CT)-derived 3D bone models were matched to the fluoroscopic images using two-dimensional (2D)/3D registration techniques. Changes in 3D kinematic results were compared. Results: The humeral head center at the beginning of arm elevation was significantly higher in the torn SSC group than in the intact SSC group (1.8±3.4 mm vs. -1.1±1.6 mm, p<0.05). In the torn SSC group, the center of the humeral head migrated superiorly, then significantly downward at 60° arm elevation (p<0.05). In the intact SSC group, significant difference was not observed in the superior-inferior translation of the humeral head between the elevation angles. Conclusions: In cases of MRCTs with a torn SSC, the center of the humeral head showed a superior translation at the initial phase of scapular plane abduction followed by inferior translation. These findings indicate the SSC muscle plays an important role in determining the dynamic stability of the glenohumeral joint in a superior-inferior direction in patients with MRCTs.

Doujet GF 골 시멘트를 사용한 인공 슬관절치환술의 임상적, 방사선적 고찰 (Clinical and radiologic study of total knee replacement arthroplasty using Doujet GF bone cement (liquid-powder bone cement containing gentamicin))

  • 최성욱;윤성민;노조셉;손인석
    • Journal of Medicine and Life Science
    • /
    • 제20권2호
    • /
    • pp.60-66
    • /
    • 2023
  • Gentamicin-loaded bone cement used in total joint arthroplasty is indispensable, as it provides stability by directly binding the surfaces of implants and bones. Depending on multiple factors, including the material of the bone cement used, common complications, such as aseptic loosening, osteolysis, and infection can occur postoperatively. In clinical practice, Doujet bone cement is easy to handle (pre-packed all-in-one system), and has shown low failure rates and non-inferior results compared with similar available products. We conducted a retrospective comparative study to analyze the clinical and radiological results of each bone cement group to establish the safety and usefulness of Doujet bone cement. From July 2020 to July 2022, we enrolled 198 patients in this study after an average follow-up period of 37 months (range, 6-48 months). In 99 patents, Doujet® bone cement (Injecta, Gunpo, Korea) was used for total knee arthroplasty (TKA), while Refobacin® bone cement (Biomet, Warsaw, IN, USA) was used in 99 patients. The average range of motion (ROM) of the knee increased by 2.4° (from 127.0° preoperatively to 129.4° postoperatively) in the Doujet group, and by 0.1° (from 128.7° to 128.8°) in the Refobacin group (P=0.701). The Western Ontario and McMaster Universities (WOMAC) osteoarthritis index scores decreased from 44.1 to 7.8 in the Doujet group, and from 44.2 to 6.3 in the Refobacin group (P=0.162). Complications, such as osteolysis or post-operative wound infection, did not occur in more than two cases in both groups. The WOMAC and ROM of the knee in both groups had no clinical differences. Both Doujet and Refobacin similarly showed low complication rates after TKA.

지지면에 따른 과제 지향적 훈련이 발목 불안정성 환자의 통증과 기능 수준, 균형능력, 그리고 근 활성도 및 근 두께에 미치는 영향 (Effect of Task-Oriented Training According to the Support Surface on Pain, Function, Balance Ability, Muscle Activity and Muscle Thickness in Patients with Ankle Instability)

  • 오윤중;박종항;박삼호
    • 대한정형도수물리치료학회지
    • /
    • 제28권1호
    • /
    • pp.29-38
    • /
    • 2022
  • Background: Task-oriented training on an unstable support surface is an effective intervention for improving the ankle joint stability and muscle strength in patients with ankle instability. This study examined the effects of balance training on an unstable support surface in patients with ankle sprains with ankle instability. Methods: Forty-four patients with ankle sprains participated in this study. Screening tests were performed and assigned to an experimental group, who performed task-oriented training on an unstable support surface (n=22), and a control group, who performed task-oriented training on a support surface (n=22) using a randomization program. All interventions were applied 3 times per week for 4 weeks. The numeric rating scale (NRS), cumberland ankle instability tool (CAIT), balance ability, muscle activity, and muscle thickness were compared to evaluate the effects of the intervention. Results: Both groups showed significant differences in the NRS, CAIT, balance ability, and muscle activity between before and after the intervention (p<.05). In addition, there were significant differences in balance ability, muscle activity, and muscle thickness between the experimental and control groups (p<.05). Conclusion: Task-oriented training on an unstable support surface is an effective intervention for improving the balance ability, muscle activity, and muscle thickness during contraction.

기구를 이용한 골반 압박이 20대의 요통 경험자와 비경험자의 체간 근지구력과 균형 능력에 미치는 영향 비교 (Comparison of the Effects of Pelvic Compression Using Instruments on Trunk Muscle Endurance and Balance Ability in Subjects in Their Twenties With or Without Low Back Pain)

  • 정서영;김선엽
    • 한국전문물리치료학회지
    • /
    • 제29권2호
    • /
    • pp.156-164
    • /
    • 2022
  • Background: Low back pain (LBP) is a representative disease, and LBP is characterized by muscle dysfunction that provides stability to the lumbar spine. This causes physical functional problems such as decreased posture control ability by reducing the muscular endurance and balance of the lumbar spine. Pelvic compression using instruments, which has been used during recent stabilization exercises, focuses on the anterior superior iliac spine of the pelvis and puts pressure on the sacroiliac joint during exercise, making the pelvis more symmetrical and stable. Currently, research has been actively conducted on the use of pelvic compression belts and non-elastic pelvic belts; however, few studies have conducted research on the application effect of pelvic compression using instruments. Objects: This study aimed to investigate whether there is a difference in trunk muscular endurance and dynamic and static balance ability levels by applying pelvic stabilization through a pelvic compression device between the LBP group and the non-LBP group. Methods: Thirty-nine subjects currently enrolled in Daejeon University were divided into 20 subjects with LBP group and 19 subjects without LBP (NLBP group), and the groups were compared with and without pelvic compression. The trunk muscular endurance test was performed with 4 movements, the dynamic balance test was performed using a Y-balance test, and the static balance test was performed using a Wii balance board. Results: There was a significant difference the LBP group and the NLBP group after pelvic compression was applied to all tests (p < 0.05). In the static and dynamic balance ability test after pelvic compression was applied, there was a significant difference in the LBP group than in the NLBP group (p < 0.05). Conclusion: These results show that pelvic compression using instruments has a positive effect on both those with and without LBP and that it has a greater impact on balance ability when applied to those with LBP.

Has Container Shipping Industry been Fixing Prices in Collusion?: A Korean Market Case

  • Jaewoong Yoon;Yunseok Hur
    • Journal of Korea Trade
    • /
    • 제27권1호
    • /
    • pp.79-100
    • /
    • 2023
  • Purpose - The purpose of this study is to analyze the market power of the Korea Container Shipping Market (Intra Asia, Korea-Europe, and Korea-U.S.) to verify the existence of collusion empirically, and to answer whether the joint actions of liner market participants in Korea have formed market dominance for each route. Precisely, it will be verified through the Lerner index as to whether the regional market of Asia is a monopoly, oligopoly, or perfect competition. Design/methodology - This study used a Lerner index adjusted with elasticity presented in the New Imperial Organization (NEIO) studies. NEIO refers to a series of empirical studies that estimate parameters to judge market power from industrial data. This study uses B-L empirical models by Bresnahan (1982) and Lau (1982). In addition, NEIO research data statistically contain self-regression and stability problems as price and time series data. A dynamic model following Steen and Salvanes' Error Correction Model was used to solve this problem. Findings - The empirical results are as follows. First, λ, representing market power, is nearly zero in all three markets. Second, the Korean shipping market shows low demand elasticity on average. Nevertheless, the markup is low, a characteristic that is difficult to see in other industries. Third, the Korean shipping market generally remains close to perfect competition from 2014 to 2022, but extreme market power appears in a specific period, such as COVID-19. Fourth, there was no market power in the Intra Asia market from 2008 to 2014. Originality/value - Doubts about perfect competition in the liner market continued, but there were few empirical cases. This paper confirmed that the Korea liner market is a perfect competition market. This paper is the first to implement dynamics using ECM and recursive regression to demonstrate market power in the Korean liner market by dividing the shipping market into Deep Sea and Intra Asia separately. It is also the first to prove the most controversial problems in the current shipping industry numerically and academically.

Bonding Temperature Effects of Robust Ag Sinter Joints in Air without Pressure within 10 Minutes for Use in Power Module Packaging

  • Kim, Dongjin;Kim, Seoah;Kim, Min-Su
    • 마이크로전자및패키징학회지
    • /
    • 제29권4호
    • /
    • pp.41-47
    • /
    • 2022
  • Ag sintering technologies have received great attention as it was applied to the inverter of Tesla's electric vehicle Model III. Ag sinter bonding technology has advantages in heat dissipation design as well as high-temperature stability due to the intrinsic properties of the material, so it is useful for practical use of SiC and GaN devices. This study was carried out to understand the sinter joining temperature effect on the robust Ag sintered joints in air without pressure within 10 min. Electroplated Ag finished Cu dies (3 mm × 3 mm × 2 mm) and substrates (10 mm × 10 mm × 2 mm) were introduced, respectively, and nano Ag paste was applied as a bonding material. The sinter joining process was performed without pressure in air with the bonding temperature as a variable of 175 ℃, 200 ℃, 225 ℃, and 250 ℃. As results, the bonding temperature of 175 ℃ caused 13.21 MPa of die shear strength, and when the bonding temperature was raised to 200 ℃, the bonding strength increased by 157% to 33.99 MPa. When the bonding temperature was increased to 225 ℃, the bonding strength of 46.54 MPa increased by about 37% compared to that of 200 ℃, and even at a bonding temperature of 250 ℃, the bonding strength exceeded 50 MPa. The bonding strength of Ag sinter joints was directly influenced by changes in the necking thickness and interfacial connection ratio. In addition, developments in the morphologies of the joint interface and porous structure have a significant effect on displacement. This study is systematically discussed on the relationship between processing temperatures and bonding strength of Ag sinter joints.

Comparison of Serratus Anterior and Abdominal Muscle Activity During Push-up Plus Exercise With Hip Adduction and the Abdominal Drawing-in Maneuver

  • Sang-hyuk Lee;Jun-hee Kim;Oh-yun Kwon
    • 한국전문물리치료학회지
    • /
    • 제31권1호
    • /
    • pp.55-62
    • /
    • 2024
  • Background: The serratus anterior (SA) is a muscle that performs protraction of the scapulothoracic joint and plays a role in stabilizing the scapula. Imbalances or weaknesses in SA activation are associated with a variety of shoulder dysfunctions, making selective SA strengthening important for rehabilitation. Objects: We aimed to compare the muscle activation of the pectoralis major (PM), SA, external oblique (EO), and internal oblique (IO) during the push-up plus (PUP) exercise with isometric hip adduction (HA) and abdominal drawing-in maneuver (ADIM). Methods: Nineteen healthy male participants performed three PUP exercises: standard PUP, PUP with ADIM, and PUP with HA. Surface electromyography was used to measure and analyze the muscle activity for PM, SA, EO, and IO. Results: PUP with HA showed the lowest PM activity and highest SA activity, and no significant difference was observed between PUP and PUP with ADIM. PUP with ADIM showed significantly the highest EO and IO activity, followed by PUP with HA and PUP. Additionally, PUP with HA showed the lowest PM/SA ratio, and no significant difference was noted between PUP and PUP with ADIM. Conclusion: PUP with HA was able to show high SA muscle activity while reducing PM muscle activity. In addition, PUP with HA can lead to higher EO and IO muscle activity than standard PUP. This exercise could be used as a practical exercise method to selectively strengthen SA and improve scapular muscle stability during early shoulder rehabilitation.

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

Prosthetic resurfacing of engaging posterior capitellar defects in recurrent posterolateral rotatory instability of the elbow

  • Dani Rotman;Jorge Rojas Lievano;Shawn W. O'Driscoll
    • Clinics in Shoulder and Elbow
    • /
    • 제26권3호
    • /
    • pp.287-295
    • /
    • 2023
  • Background: Posterolateral rotatory instability (PLRI) is a common mechanism of recurrent elbow instability. While the essential lesion is a deficiency in the lateral ulnar collateral ligament (LUCL), there are often associated concomitant bony lesions, such as an Osborne-Cotterill lesions (posterior capitellar fractures) and marginal radial head fractures, that compromise stability. Currently, there is no standard treatment for posterior capitellar deficiency associated with recurrent PLRI. Methods: We conducted a retrospective review of five patients with recurrent PLRI of the elbow associated with a posterior capitellar impaction fracture engaging with the radial head during normal range of motion. The patients were treated surgically with LUCL reconstruction or repair and off-label reconstruction of the capitellar joint surface using a small metal prosthesis designed for metatarsal head resurfacing (HemiCAP toe classic). Results: Five patients (three adolescent males, two adult females) were treated between 2007 and 2018. At a median follow-up of 5 years, all patients had complete relief of their symptomatic instability. No patients had pain at rest, but two patients had mild pain (visual analog scale 1-3) during physical activity. Three patients rated their elbow as normal, one as almost normal, and one as greatly improved. On short-term radiographic follow-up there were no signs of implant loosening. None of the patients needed reoperation. Conclusions: Recurrent PLRI of the elbow associated with an engaging posterior capitellar lesion can be treated successfully by LUCL reconstruction and repair and filling of the capitellar defect with a metal prosthesis. This treatment option has excellent clinical results in the short-medium term. Level of evidence: IV.

슬관절 전외측인대의 해부학, 생역학, 수술법 및 임상적 결과 (Anterolateral Ligament of the Knee: Anatomy, Biomechanics, Techniques, and Clinical Outcome)

  • 김성환;이태협;박용범
    • 대한정형외과학회지
    • /
    • 제55권4호
    • /
    • pp.281-293
    • /
    • 2020
  • 전방십자인대 재건술은 슬관절 수술 중에서 흔하게 시행되는 수술 중 한가지이나 해부학 및 생역학에 대한 이해가 증가하여 수술 기법의 다양한 변화가 있었음에도 수술 실패는 7%-16% 정도로 보고되고 있어 회전 불안정성에 대한 관심은 지속적으로 강조되고 있다. 최근 들어 전외측인대가 회전 불안정성에 대한 2차적인 지지 구조물로 많은 관심을 받고 연구되고 있다. 하지만 아직까지 전외측인대의 해부학적 형태, 생역학 및 임상 결과에 있어서 논란이 있다. 전외측인대는 대퇴골 외상과 부위에서 경골 근위부의 Gerdy's 결절과 비골 골두 사이에서 슬관절 전외측으로 주행하는 구조물로 알려져 있으며 생역학적 연구에서 경골의 내회전에 따라 전외측인대의 긴장도가 증가하는 슬관절 회전안정성에 기여를 하는 구조물로 알려져 있다. 전외측인대 손상의 진단은 신체검사, 방사선적 검사, 자기공명영상 등의 다양한 검사를 이용하여 종합적으로 판단하며 그중 주로 pivot-shift 검사와 자기공명영상의 결과를 종합하여 진단하게 된다. 최근에는 장경인대의 Kaplan 섬유 등과 같이 전외측인대 복합체로 판단하기도 하며 그 구조물들의 손상여부를 각각 고려하기도 한다. 치료에 있어서 다양한 수술법이 소개되어 사용되고 있고, 연구마다 다른 수술의 적응증을 제시하고 있는 실정으로 최근의 임상적 연구에서 회전 불안정성에 있어 긍정적인 효과를 보고하였지만 앞으로 더 많은 연구가 진행되어야 전외측인대를 강화하는 외측 강화 술식의 유용성에 대한 정확한 평가가 될 수 있을 것으로 판단된다.