• 제목/요약/키워드: Joint set

검색결과 678건 처리시간 0.03초

차체 Side Key Section 을 이용한 등가빔 결합부 모델링 및 강성해석 (Equivalent Beam Joint Modeling and Vibration Analysis Using Vehicle Side Key Sections)

  • 성영석;임홍재;김기창
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.252-257
    • /
    • 2006
  • Low vibration characteristics of a vehicle are mainly influenced by the local stiffness of the joint structure beam section. The method of substituting equivalent beam element to spring element for the joint is presented. Formation process of the equivalent beam joint modeling is described in terms of key section properties. To get required dynamic characteristics section properties of the equivalent beam element are set to design variables. The study shows that the equivalent beam joint model can be effectively used for low frequency vibration analysis of a vehicle.

  • PDF

The Improved Joint Bayesian Method for Person Re-identification Across Different Camera

  • Hou, Ligang;Guo, Yingqiang;Cao, Jiangtao
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.785-796
    • /
    • 2019
  • Due to the view point, illumination, personal gait and other background situation, person re-identification across cameras has been a challenging task in video surveillance area. In order to address the problem, a novel method called Joint Bayesian across different cameras for person re-identification (JBR) is proposed. Motivated by the superior measurement ability of Joint Bayesian, a set of Joint Bayesian matrices is obtained by learning with different camera pairs. With the global Joint Bayesian matrix, the proposed method combines the characteristics of multi-camera shooting and person re-identification. Then this method can improve the calculation precision of the similarity between two individuals by learning the transition between two cameras. For investigating the proposed method, it is implemented on two compare large-scale re-ID datasets, the Market-1501 and DukeMTMC-reID. The RANK-1 accuracy significantly increases about 3% and 4%, and the maximum a posterior (MAP) improves about 1% and 4%, respectively.

이중 불확실성하의 공정-저장조 망구조 최적설계 (Optimal Design of Process-Inventory Network under Cycle Time and Batch Quantity Uncertainties)

  • 서근학;이경범
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.305-312
    • /
    • 2010
  • The aim of this study is to find an analytic solution to the problem of determining the optimal capacity of a batch-storage network to meet demand for finished products in a system undergoing joint random variations of operating time and batch material loss. The superstructure of the plant considered here consists of a network of serially and/or parallel interlinked batch processes and storage units. The production processes transform a set of feedstock materials into another set of products with constant conversion factors. The final product demand flow is susceptible to joint random variations in the cycle time and batch size. The production processes have also joint random variations in cycle time and product quantity. The spoiled materials are treated through regeneration or waste disposal processes. The objective function of the optimization is minimizing the total cost, which is composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis the PSW (Periodic Square Wave) model, provides a judicious graphical method to find the upper and lower bounds of random flows. The advantage of this model is that it provides a set of simple analytic solutions while also maintaining a realistic description of the random material flows between processes and storage units; as a consequence of these analytic solutions, the computation burden is significantly reduced. The proposed method has the potential to rapidly provide very useful data on which to base investment decisions during the early plant design stage. It should be of particular use when these decisions must be made in a highly uncertain business environment.

A hybrid method for dynamic stiffness identification of bearing joint of high speed spindles

  • Zhao, Yongsheng;Zhang, Bingbing;An, Guoping;Liu, Zhifeng;Cai, Ligang
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.141-159
    • /
    • 2016
  • Bearing joint dynamic parameter identification is crucial in modeling the high speed spindles for machining centers used to predict the stability and natural frequencies of high speed spindles. In this paper, a hybrid method is proposed to identify the dynamic stiffness of bearing joint for the high speed spindles. The hybrid method refers to the analytical approach and experimental method. The support stiffness of spindle shaft can be obtained by adopting receptance coupling substructure analysis method, which consists of series connected bearing and joint stiffness. The bearing stiffness is calculated based on the Hertz contact theory. According to the proposed series stiffness equation, the stiffness of bearing joint can be separated from the composite stiffness. Then, one can obtain the bearing joint stiffness fitting formulas and its variation law under different preload. An experimental set-up with variable preload spindle is developed and the experiment is provided for the validation of presented bearing joint stiffness identification method. The results show that the bearing joint significantly cuts down the support stiffness of the spindles, which can seriously affects the dynamic characteristic of the high speed spindles.

경상누층군 퇴적암의 절리 특성 연구 (Joint Characteristics in Sedimentary Rocks of Gyeongsang Supergroup)

  • 장태우;손병국
    • 지질공학
    • /
    • 제19권3호
    • /
    • pp.351-363
    • /
    • 2009
  • 경상분지 내 구미노두와 다사노두 지역에서 신동층군의 사암층을 대상으로 절리 연구가 집중적으로 이루어졌다. 사암-이암 시퀀스의 양 지역 노두에서 똑같이 두 조의 직교 절리가 사암층에 전형적으로 발달하고 있다. 여러 가지 절리 자료들을 양 지역의 동일한 두께의 층에서 비교하여보면 상당히 유사한데 이는 절리 조들이 동일한 응력장에서 신장 변형 작용으로 균질하게 생성되었음을 이야기 한다. 대부분의 절리들은 퇴적물이 매몰되어 고화되는 과정에서 수압단열작용에 의해 생성된 것으로 생각되며, 사암층의 층 경계에 수직이고 층 경계에 이르러 중지한다. 두 조의 직교하는 절리들은 단열 격자차단 양상으로 해석되는 상호 접경하는 관계로 볼 때 ${\sigma}_1$은 수직으로 고정된 상태에서 ${\sigma}_2$${\sigma}_3$의 빠른 교환에 의해 거의 동시에 생성된 것으로 판단된다. 사암층에서의 절리조들은 인접한 절리 간에 평행한 배향을 가지며 규칙적인 간격을 가지고 절리면은 평탄하다. 절리간격은 층 두께에 비례하고 간격분포는 대부분의 층에서 대수-정규분포 내지 정규 분포를 나타낸다. 그러나 다중층에서는 간격의 분포범위가 크고 불규칙한 형태를 보여준다. 연구지역에서 두 조의 절리들은 최빈값/평균값의 비가 1 내외로 포화상태를, 또 다른 척도인 변동계수(Cv)도 1이하의 낮은 값으로 포화를 지시한다. 절리의 개구는 모든 사암충의 절리에서 균질하기보다는 절리의 길이가 증가함에 따라 증가하는 경향을 갖는다.

직교좌표공간과 관절공간에서의 4족 보행로봇의 두 가지 진화적 걸음새 생성기법 (Two Evolutionary Gait Generation Methods for Quadruped Robots in Cartesian Coordinates Space and Join Coordinates Space)

  • 서기성
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.389-394
    • /
    • 2014
  • Two evolutionary gait generation methods for Cartesian and Joint coordinates space are compared to develop a fast locomotion for quadruped robots. GA(Genetic Algorithm) based approaches seek to optimize a pre-selected set of parameters for the locus of paw and initial position in cartesian coordinates space. GP(Genetic Programming) based technique generate few joint trajectories using symbolic regression in joint coordinates space as a form of polynomials. Optimization for two proposed methods are executed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are analysed in terms of different coordinate spaces.

폐쇄계를 포함하는 탄성 기계시스템의 동역학적 해석 (Dynamic Analysis of Flexible Mechanical System)

  • 안덕환;이병훈
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.271-276
    • /
    • 1995
  • This paper presents a systematic method for the dynamic analysis of flexible mechanical systems containing closed kinematic loops. Kinematics between pairs of contiguous flexible bodies is described with the joint coordinates and the deformation modal coordinates. The cut-joint constraint equations associated with the closed kinematic loops are derived, simply using the geometric conditions. The equations of motions are initially written in terms of the joint and modal coordinates using the velocity transformation technique. Lagrange multipliers associated with the cut-joint constraints for closed-loop systems are then eliminated systematically using the generalized coordinate partitioning method, resulting to a minimal set of equations of motion.

인체 무릎 관절의 굴신 운동 해석 기법 (A Method to Describe and Analyze Human Knee Joint Motion)

  • 문병영;손권;박정홍;서정탁
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.233-239
    • /
    • 2003
  • Three dimensional joint motion data were obtained using X-ray and precise magnetic sensors. Six metal markers were inserted on the femur and the tibia to set the coordinate system. Two magnetic position sensors were used to record motion data and these positions were transformed into the knee motion. The quadriceps muscle was extended in an automatic manner by an extraction machine. Results of the knee joint motion were the same as the clinical data. The proposed method is found to be reasonable in describing the knee motion so that these motion data can be used to simulate the normal knee joint.

Structural joint modeling and identification: numerical and experimental investigation

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.373-392
    • /
    • 2015
  • In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed first for a two parameter joint model and then for a three parameter model, in which cross coupling terms are also included. Two cases of structural connections have been considered, first with a cantilever beam with support flexibility and then a pair of beams connected through lap joint. The validity of the proposed method is demonstrated through numerical simulation and by experimentation.

머시닝센터 회전 결합부의 정강성 Tuning 기법 (Static Stiffness Tuning Method of Rotational Joint of Machining Center)

  • 김양진;이찬홍
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.797-803
    • /
    • 2010
  • A method has been developed to tune the static stiffness at a rotation joint considering the whole machine tool system by interactive use of finite element method and experiment. This paper describes the procedure of this method and shows the results. The method uses the static experiment on measurement model which is set-up so that the effects of uncertain factors can be excluded. For FEM simulation, the rotation joint model is simplified using only spindle, bearing and spring. At the rotation joint, the damping coefficient is ignored, The spindle and bearing is connected by only spring. By static experiment, 500 N is forced to the front and behind portion of spindle and the deformation is measured by capacitive sensor. The deformation by FEM simulation is extracted with changing the static stiffness from the initial static stiffness considering only rotation joint. The tuning static stiffness is obtained by exploring the static stiffness directly trusting the deformation from the static experiment. Finally, the general tuning method of the static stiffness of machine tool joint is proposed using the force stream and the modal analysis of machine tool.