Joint Characteristics in Sedimentary Rocks of Gyeongsang Supergroup

경상누층군 퇴적암의 절리 특성 연구

  • Chang, Tae-Woo (Department of Geology, Kyungpook National University) ;
  • Son, Byeong-Kook (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 장태우 (경북대학교 지질학과) ;
  • 손병국 (한국지질자원연구원 석유해저연구본부)
  • Published : 2009.09.30

Abstract

Two orthogonal joint sets develop well only in sandstone beds in the sandstone-mudstone sequences of Gumi and Dasa outcrops within Cretaceous Gyeongsang Basin. And various joint data are similar in the beds of the same thickness in both outcrops, meaning that the joint sets were homogeneously produced by extensional deformation in the same regional stress field. Most of joints in the sandstone beds are orthogonal to, and confined by bed boundaries, which are believed to be formed by hydrofracturing during consolidation after burial. Two orthogonal joint sets are considered to be almost coeval on the basis of mutual abutting relationship which makes up fracture grid-lock and a product of rapid switching of ${\sigma}_2$ and ${\sigma}_3$ axes with constant ${\sigma}_1$ direction oriented to vertical. The joint sets in the sandstone beds show planar surfaces, parallel orientations and regular spacing, with joint spacing linearly proportional to bed thickness. The spacing distributions of the joints seem to correspond to log-normal to almost normal distribution in most of the beds. But multilayer joints do not display regular spacing and dominant size. Either joint set in this study is characterized by a high level of joint density and a saturated spacing distribution as indicated by the mode/mean ratio values and the Cv(coefficient of variance) values. Joint aperture tends to increase with the vertical length of the joints controlled by bed thickness.

경상분지 내 구미노두와 다사노두 지역에서 신동층군의 사암층을 대상으로 절리 연구가 집중적으로 이루어졌다. 사암-이암 시퀀스의 양 지역 노두에서 똑같이 두 조의 직교 절리가 사암층에 전형적으로 발달하고 있다. 여러 가지 절리 자료들을 양 지역의 동일한 두께의 층에서 비교하여보면 상당히 유사한데 이는 절리 조들이 동일한 응력장에서 신장 변형 작용으로 균질하게 생성되었음을 이야기 한다. 대부분의 절리들은 퇴적물이 매몰되어 고화되는 과정에서 수압단열작용에 의해 생성된 것으로 생각되며, 사암층의 층 경계에 수직이고 층 경계에 이르러 중지한다. 두 조의 직교하는 절리들은 단열 격자차단 양상으로 해석되는 상호 접경하는 관계로 볼 때 ${\sigma}_1$은 수직으로 고정된 상태에서 ${\sigma}_2$${\sigma}_3$의 빠른 교환에 의해 거의 동시에 생성된 것으로 판단된다. 사암층에서의 절리조들은 인접한 절리 간에 평행한 배향을 가지며 규칙적인 간격을 가지고 절리면은 평탄하다. 절리간격은 층 두께에 비례하고 간격분포는 대부분의 층에서 대수-정규분포 내지 정규 분포를 나타낸다. 그러나 다중층에서는 간격의 분포범위가 크고 불규칙한 형태를 보여준다. 연구지역에서 두 조의 절리들은 최빈값/평균값의 비가 1 내외로 포화상태를, 또 다른 척도인 변동계수(Cv)도 1이하의 낮은 값으로 포화를 지시한다. 절리의 개구는 모든 사암충의 절리에서 균질하기보다는 절리의 길이가 증가함에 따라 증가하는 경향을 갖는다.

Keywords

References

  1. 김정환, 임주환, 1974, 한국지질도(1: 50,000), 구미도폭 및 설명서. 국립지질광물연구소
  2. 장태우, 2009, 층상 암석에서 절리의 특성 연구. 지질공학, 19, 145-152
  3. Bai. T. and Polland, D. D., 2000, Closely spaced fractures in layered rocks ; initiation mechanism and propagation kinematics. J. Struct. Geol., 22, 1409-1425 https://doi.org/10.1016/S0191-8141(00)00062-6
  4. Bai. T., Polland, D. D., and Gross, M. R., 2000, Mechanical Prediction of fracture aperture in layered rocks. J. Geophys. Res., 105, 707-721 https://doi.org/10.1029/1999JB900303
  5. Dunne, W. D. and Hancock, P. L., 1994, Paleostress analysis of small-scale brittle structures. In: Continental deformation (edited by Hancock, P. L.) Pergamon Press, pp.101-120
  6. Engelder, T., 1987, Joints and shear fractures in rocks. In ; Atkinson, B. K. (Ed.). Fracture mechanics of rock. Academic Press, London, pp27-69
  7. Gillespie, P., 2003, Comment on 'The geometric and statistical evolution of normal fault system : an experimental study of the effects of mechanical layer thickness on scaling laws' by R. V. Ackerman, R. W. Schlische and M. O. Withjack. J. Struct. Geol., 25, 819-822 https://doi.org/10.1016/S0191-8141(02)00058-5
  8. Gross, M. R. 1993, The origin and spacing of cross joint : examples from the Monterey Formation, Santa Barbara Coastline, California. J. Struct. Geol., 15, 737-751 https://doi.org/10.1016/0191-8141(93)90059-J
  9. Ji, S. and Saruwatari, K., 1998, A revised model for the relationship between joint spacing and layer thickness. J. Struct. Geol., 20, 1495-1508 https://doi.org/10.1016/S0191-8141(98)00042-X
  10. Ladeira, F. L. and Price, N. J., 1981, Relationship between fracture spacing and bed thickness. J. Struct. Geol., 3, 179-183 https://doi.org/10.1016/0191-8141(81)90013-4
  11. Narr, W. and Suppe, J., 1991, Joint spacing in sedimentary rocks. J. Struct. Geol., 13, 1037-1048 https://doi.org/10.1016/0191-8141(91)90055-N
  12. Odonne, F., Lezin, C., Massonnat, G. and Escadeillas, G., 2007, The relationship between joint aperture, spacing distribution, vertical dimension and carbonate stratification : An example from the Kimmeridgian limestones of pointe-du-Chay(France). J. Struct. Geol., 29, 746-758 https://doi.org/10.1016/j.jsg.2006.12.005
  13. Polland, D. D. and Aydin, A., 1988, Progress in understanding jointing over the past century. Geol. Soc. Am. Bull., 100, 1181-1204 https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2
  14. Rives, T., Razack, M., Petit, J. P., and Rawnsley, K. D., 1992, Joint spacing : analogue and numerical simulations. J. Struct. Geol., 14, 925-937 https://doi.org/10.1016/0191-8141(92)90024-Q
  15. Ruf, J. C., Rust, K. A. and Engelder, T., 1998, Investigating the effect of mechanical discontinuities on joint spacing. Tectonophysics, 259, 245-257 https://doi.org/10.1016/0040-1951(95)00129-8
  16. Tateiwa, I., 1929, Geological Atlas of Korea, Waegwan Sheet(1: 50,000). Geological Survey of Korea
  17. Tayler, W. L., Pollard, D. D. and Aydin, A, 1999, Fluid flow in discrete joint sets : field observations and numerical simulations. J. Geopys. Res., 104, 28,983-29,006 https://doi.org/10.1029/1999JB900179
  18. Twiss, R. L. and Moores, E. M., 2007, Structural Geology. Freeman and Company, 736pp
  19. Wu, H. and Pollard, D. D., 1995, An experimental study of the relationship between joint spacing and layer thickness. J. Struct. Geol., 17, 887-905 https://doi.org/10.1016/0191-8141(94)00099-L