• 제목/요약/키워드: Joint geometry

검색결과 179건 처리시간 0.025초

1mm 가상 노치 반경을 이용한 용접부 피로강도 평가에 관한 연구 (Application of 1mm fictitious notch radius approach to the fatigue strength assessment of welded joint)

  • 김유일;강중규;허주호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 추계학술발표대회 개요집
    • /
    • pp.275-277
    • /
    • 2004
  • Fictitious notch radius approach is based on the Neuter's microstructural support hypothesis which assumes that fatigue crack is governed by highly stressed volume of the material right on the weld toe area rather than the surface stress at a pin point of weld toe area. Variety of successes have been achieved in applying this methodology to the fatigue of welded joint, hence, it became one of recommended design procedure in IIW's recommendation as well as many ship classification societies. 1mm fictitious notch radius approach was applied to the various fatigue problems of welded joints in this study covering the effect of weld size, notch stress calculation for 3D geometry and low cycle fatigue problem. It was found that fictitious notch radius approach fumed out to be very effective and accurate in dealing with fatigue strength of welded joint.

  • PDF

Ratcheting analysis of joined conical cylindrical shells

  • Singh, Jaskaran;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.913-929
    • /
    • 2015
  • The ratcheting and strain cyclic behaviour of joined conical-cylindrical shells under uniaxial strain controlled, uniaxial and multiaxial stress controlled cyclic loading are investigated in the paper. The elasto-plastic deformation of the structure is simulated using Chaboche non-linear kinematic hardening model in finite element package ANSYS 13.0. The stress-strain response near the joint of conical and cylindrical shell portions is discussed in detail. The effects of strain amplitude, mean stress, stress amplitude and temperature on ratcheting are investigated. Under strain symmetric cycling, the stress amplitude increases with the increase in imposed strain amplitude. Under imposed uniaxial/multiaxial stress cycling, ratcheting strain increases with the increasing mean/amplitude values of stress and temperature. The abrupt change in geometry at the joint results in local plastic deformation inducing large strain variations in the vicinity of the joint. The forcing frequency corresponding to peak axial ratcheting strain amplitude is significantly smaller than the frequency of first linear elastic axial vibration mode. The strains predicted from quasi static analysis are significantly smaller as compared to the peak strains from dynamic analysis.

Three-Dimensional Contact Dynamic Model of the Human Knee Joint During Walking

  • Mun, Joung-Hwan;Lee, Dae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.211-220
    • /
    • 2004
  • It is well known that the geometry of the articular surface has a major role in determining the position of articular contact and the lines of action for the contact forces. The contact force calculation of the knee joint under the effect of sliding and rolling is one of the most challenging issues in this field. We present a 3-D human knee joint model including sliding and rolling motions and major ligaments to calculate the lateral and medial condyle contact forces from the recovered total internal reaction force using inverse dynamic contact modeling and the Least-Square method. As results, it is believed that the patella, muscles and tendon affect a lot for the internal reaction forces at the initial heel contact stage. With increasing flexion angles during gait, the decreasing contact area is progressively shifted to the posterior direction on the tibia plateau. In addition, the medial side contact force is larger than the lateral side contact force in the knee joint during normal human walking. The total internal forces of the knee joint are reasonable compared to previous studies.

자동차용 강판의 겹치기 $CO_2$ 레이저 용접에서 용접속도와 판재간격에 따른 용접특성 연구 (Effects of the Gap and the Speed on the Lap-Joint $CO_2$ Laser Welding of Automotive Steel Sheets)

  • 이경돈;박기영;김주관
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.510-516
    • /
    • 2002
  • Recently the laser welding technology has been applied increasingly for the automotive bodies. But the lap joint laser welding for 3 dimensional automotive body is new while the butt joint laser welding is well known as the tailored blank technology. In this study, the process window was found for the full penetration welding of the lap joint of the 1mm-thick high strength steel sheets. The limit curves and characteristic curves were suggested to define the boundaries and the contour lines in a space of the welding speed and the gap size. The characteristics of the weld sectional geometry were used to determine the limit curves. They are bead width, penetration depth and sectional area. After the observed data was analysed carefully, it was noticed that there was a transition point at which the sectional shape was changed and the bead area jumped as the welding speed was increased. Also a new concept of 'input energy Per volume' was suggested to distinguish the difference at the transition Point. The difference of sectional areas at the transition point can be related to the dynamic keyhole phenomena.

최소자승법을 이용한 원판형 절리의 직경분포와 체적빈도 추정에 관한 연구 (A Study on the Estimation of Diameter Distribution and Volumetric Frequency of Joint Discs Using the Least Square Method)

  • 송재준
    • 터널과지하공간
    • /
    • 제15권2호
    • /
    • pp.137-144
    • /
    • 2005
  • 이 연구에서는 최소자승법을 이용하여 절리의 직경분포를 추정하는 방법을 개발하였다. 이전에 Song and Lee가 제안한 방법에서는 현장에서 조사한 양끝내포선(contained trace) 분포로부터 무한 조사창에서 정의되는 절리선(joint trace) 길이 분포를 먼저 구하고 이 후에 직경분포를 구하게 된다. 그러나 새로 제안한 방법을 사용하면 중간 추정과정없이 현장에서 얻은 양끝내포선 분포로부터 바로 절리의 직경분포를 구할 수 있다. 이전의 방법과 비교할 때 새로 제안된 방법은 표본의 크기가 작을 때 조금 더 높은 추정정밀도를 보이며, 직경분포를 추정하는 과정에서 절리의 기하학적 파라미터의 하나인 체적빈도(volumetric frequency)도 제공한다. 새로운 추정법의 검증을 위해 Monte Carlo 시뮬레이션을 적용하였다.

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

입체해석학적 접근법에 의한 암반 절리 크기 및 밀집도의 통계적 분석에 관한 연구 (A Study of Statistical Analysis of Rock Joint Size and Intensity by Stereological Approach)

  • 류동우;김영민;이희근
    • 터널과지하공간
    • /
    • 제12권1호
    • /
    • pp.10-18
    • /
    • 2002
  • 암반 구조물의 거동에 있어 지배적인 영향을 마치는 3차원 암반 절리계의 정의는 2차원 혹은 3차원 불연속 암반 거동의 예측을 위한 수치해석 시 매우 중요하다 .3차원 절리계의 정의에 있어 현실성을 높이기 위해서는 기본적인 절리 기하학적 속성에 대한 객관적이고 정확한 통계량 추정이 필수적이다. 이에 본 연구는 절리 기하학적 속성 중 절리 크기 및 밀집도를 중심으로 통계적 분석기법에 대해 제안하고 , 절리 크기 및 밀집도의 추정에 필요한 관계식을 유도하였다 .3차원 공간상에 위치하는 절리 기하는 위치, 크기, 밀집도, 방향의 결합된 형태로서 정의할 수 있다. 그러나, 조사방법 및 자료의 차원 한계 (dimensional limit)로 인해 3차원 기하학적 속성은 확률론적이다. 따라서, 절리 크기의 추정 시 차원 한계로부터 발생할 수 있는 여러 편향들을 보정하기 위한 기법을 논의하였고, 업체해석학적 기법을 도입하여 절리 크기의 통계량으로부터 3차원 밀집도를 유도하였다.

알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향 (The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel)

  • 김남규;김병철;정병훈;송상우;;강정윤
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.

나선축 개념을 이용한 팔꿈치 관절의 3차원 회전축 측정과 측정 결과를 반영한 인체 팔 모델의 개발 (Determination of the Elbow Transverse Joint Using the Helical Axis Concept and its Application to the Development of a Kinematic Arm Model)

  • 우범영;정의승;윤명환
    • 대한산업공학회지
    • /
    • 제26권1호
    • /
    • pp.73-80
    • /
    • 2000
  • To determine the exact direction and location of the human joint in motion is crucial in developing a more accurate human model and producing a more fitting artificial joint. There have been several reports on the biomechanical analysis of the joint to determine the anatomy and movement of joints. However, all the previous researches were made in vitro study, that is, they investigated the passive movement of the joint from cadavers and the suggested location of the joint axis was difficult to make practical applications due to the lack of the direction of joint axis. Also, in many biomechanical models, each joint axis is assumed to lie horizontally or vertically to the adjacent links. Such an assumption causes inherent inaccuracy. In this study, the direction and location of the transverse elbow axis was obtained with respect to the global coordinate system whose origin is on the lateral epicondyle of the humerus. The suggested result based on the global coordinate system lying on the external landmark will be helpful to understand the information of the axis and to make an application. From the experiments conducted for five subjects, the direction and location of the elbow transverse joint was determined for each subject by the helical axis method. A statistical validation was also performed to confirm the result. Finally, the result was applied to develop a simple elbow model which is a part of the kinematic arm model. The simple elbow movement model was developed to validate the significance of the result and the kinematic arm model was able to describe the geometry of any complex linkage system. As a result, the errors incurred from the proposed model were significantly reduced when compared to the ones from the previous approach.

  • PDF

Modeling and SINR Analysis of Dual Connectivity in Downlink Heterogeneous Cellular Networks

  • Wang, Xianling;Xiao, Min;Zhang, Hongyi;Song, Sida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5301-5323
    • /
    • 2017
  • Small cell deployment offers a low-cost solution for the boosted traffic demand in heterogeneous cellular networks (HCNs). Besides improved spatial spectrum efficiency and energy efficiency, future HCNs are also featured with the trend of network architecture convergence and feasibility for flexible mobile applications. To achieve these goals, dual connectivity (DC) is playing a more and more important role to support control/user-plane splitting, which enables maintaining fixed control channel connections for reliability. In this paper, we develop a tractable framework for the downlink SINR analysis of DC assisted HCN. Based on stochastic geometry model, the data-control joint coverage probabilities under multi-frequency and single-frequency tiering are derived, which involve quick integrals and admit simple closed-forms in special cases. Monte Carlo simulations confirm the accuracy of the expressions. It is observed that the increase in mobility robustness of DC is at the price of control channel SINR degradation. This degradation severely worsens the joint coverage performance under single-frequency tiering, proving multi-frequency tiering a more feasible networking scheme to utilize the advantage of DC effectively. Moreover, the joint coverage probability can be maximized by adjusting the density ratio of small cell and macro cell eNBs under multi-frequency tiering, though changing cell association bias has little impact on the level of the maximal coverage performance.