• 제목/요약/키워드: Joint angle estimation model

검색결과 23건 처리시간 0.026초

점 배치 작업 시 제시된 로봇 비젼 제어알고리즘의 가중행렬의 영향에 관한 연구 (A Study on the Effect of Weighting Matrix of Robot Vision Control Algorithm in Robot Point Placement Task)

  • 손재경;장완식;성윤경
    • 한국정밀공학회지
    • /
    • 제29권9호
    • /
    • pp.986-994
    • /
    • 2012
  • This paper is concerned with the application of the vision control algorithm with weighting matrix in robot point placement task. The proposed vision control algorithm involves four models, which are the robot kinematic model, vision system model, the parameter estimation scheme and robot joint angle estimation scheme. This proposed algorithm is to make the robot move actively, even if relative position between camera and robot, and camera's focal length are unknown. The parameter estimation scheme and joint angle estimation scheme in this proposed algorithm have form of nonlinear equation. In particular, the joint angle estimation model includes several restrictive conditions. For this study, the weighting matrix which gave various weighting near the target was applied to the parameter estimation scheme. Then, this study is to investigate how this change of the weighting matrix will affect the presented vision control algorithm. Finally, the effect of the weighting matrix of robot vision control algorithm is demonstrated experimentally by performing the robot point placement.

로봇 비젼 제어기법에 사용된 카메라의 최적 배치에 대한 실험적 연구 (An Experimental Study on the Optimal Arrangement of Cameras Used for the Robot's Vision Control Scheme)

  • 민관웅;장완식
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.15-25
    • /
    • 2010
  • The objective of this study is to investigate the optimal arrangement of cameras used for the robot's vision control scheme. The used robot's vision control scheme involves two estimation models, which are the parameter estimation and robot's joint angle estimation models. In order to perform this study, robot's working region is divided into three work spaces such as left, central and right spaces. Also, cameras are positioned on circular arcs with radius of 1.5m, 2.0m and 2.5m. Seven cameras are placed on each circular arc. For the experiment, nine cases of camera arrangement are selected in each robot's work space, and each case uses three cameras. Six parameters are estimated for each camera using the developed parameter estimation model in order to show the suitability of the vision system model in nine cases of each robot's work space. Finally, the robot's joint angles are estimated using the joint angle estimation model according to the arrangement of cameras for robot's point-position control. Thus, the effect of camera arrangement used for the robot's vision control scheme is shown for robot's point-position control experimentally.

무릎 관절각을 이용한 무릎 근육 길이와 모멘트 암 추정 (Estimation of Knee Muscle Length and Moment Arm Using Knee Joint Angle)

  • 이재강;남윤수
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.167-176
    • /
    • 2008
  • Recently, lots of studies are performed in developing of active orthosis. Exact and simple muscle force estimation is important in developing orthosis which assists muscle force for disabled people or physical laborers. Hill-type muscle model dynamics is common method for estimation of muscle forces. In Hill-type muscle model, we must know muscle length and moment arm which largely affect muscle force. And several methods are proposed to estimate muscle length and moment arm using joint angle. In this study, we compared estimation results of those method with data from body model of opensim to find which method is exact for estimation of muscle length and moment arm.

  • PDF

팔의 자세예측을 위한 비용함수의 개발에 관한 연구

  • 최재호;김성환;정의승
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1994년도 춘계학술대회논문집
    • /
    • pp.115-123
    • /
    • 1994
  • A man model can be used as an effective tool to design ergomonically sound products and workplaces, and subsequently evaluate them properly. For a man model to be truly useful, it must be integrated with a posture prediction model which should be capable of representing the human arm reach posture in the context of equipments and workspaces. Since the human movement possesses redundant degrees of freedom, accurate representation or prediction of human movemtn was known to be a difficult problem. To solve this redundancy problem, the psychophysical cost function can predict the arm reach posture accurately. But the joint discomfort that human feels at the joint can not be predicted since the effects of external factors on the joint discomfort is not known. In this study a psychophysical experi- ment using the magnitude estimation technique was performed to evaluate the effects of external factors such as joint, joint angle and Perceived Exertion Ratio on the joint discomfort. Results showed that the joint discomfort increased as the Perceived Exertion Ratio increased, but the relation is not linear and was affected not only by the joint but also by the joint angle for the same Perceived Exertion Ratio. The interaction effect of the joint and the joint angle was also significant. From the results it is needed to develope the cost function which can predict the joint discomfort considering the joint, joint angle and external load.

  • PDF

기능적 전기자극을 위한 근골격계 모델 개발 - 무릎관절에서의 근골격계 모델 특성치의 비침습적 추정 - (Development of a Musculoskeletal Model for Functional Electrical Stimulation - Noninvasive Estimation of Musculoskeletal Model Parameters at Knee Joint -)

  • 엄광문
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권3호
    • /
    • pp.293-301
    • /
    • 2001
  • A patient-specific musculoskeletal model, whose parameters can be identified noninvasively, was developed for the automatic generation of patient-specific stimulation pattern in FES. The musculotendon system was modeled as a torque-generator and all the passive systems of the musculotendon working at the same joint were included in the skeletal model. Through this, it became possible that the whole model to be identified by using the experimental joint torque or the joint angle trajectories. The model parameters were grouped as recruitment of muscle fibers, passive skeletal system, static and dynamic musculotendon systems, which were identified later in sequence. The parameters in each group were successfully estimated and the maximum normalized RMS errors in all the estimation process was 8%. The model predictions with estimated parameter values were in a good agreement with the experimental results for the sinusoidal, triangular and sawlike stimulation, where the normalized RMS error was less than 17%, Above results show that the suggested musculoskeletal model and its parameter estimation method is reliable.

  • PDF

Fast-convergence trilinear decomposition algorithm for angle and range estimation in FDA-MIMO radar

  • Wang, Cheng;Zheng, Wang;Li, Jianfeng;Gong, Pan;Li, Zheng
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.120-132
    • /
    • 2021
  • A frequency diverse array (FDA) multiple-input multiple-output (MIMO) radar employs a small frequency increment across transmit elements to produce an angle-range-dependent beampattern for target angle and range detection. The joint angle and range estimation problem is a trilinear model. The traditional trilinear alternating least square (TALS) algorithm involves high computational load due to excessive iterations. We propose a fast-convergence trilinear decomposition (FC-TD) algorithm to jointly estimate FDA-MIMO radar target angle and range. We first use a propagator method to obtain coarse angle and range estimates in the data domain. Next, the coarse estimates are used as initialized parameters instead of the traditional TALS algorithm random initialization to reduce iterations and accelerate convergence. Finally, fine angle and range estimates are derived and automatically paired. Compared to the traditional TALS algorithm, the proposed FC-TD algorithm has lower computational complexity with no estimation performance degradation. Moreover, Cramer-Rao bounds are presented and simulation results are provided to validate the proposed FC-TD algorithm effectiveness.

MVC 상태에서의 무릎관절 모멘트 추정을 위한 모델 개발 (Development of a Model for the Estimation of Knee Joint Moment at MVC)

  • 남윤수;이우은
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.222-230
    • /
    • 2008
  • This paper introduces a method of estimating the knee joint moment developed during MVC. By combining the Hill-type muscle model and analytic results on moment arm and musculotendon length change as a function of hip and knee joint angle, the knee joint moment at a specific knee joint angle during MVC is determined. Many differences between the estimated results and the experimental data are noted. It is believed that these differences originate from inaccurate information on the muscle-tendon parameters. The establishment of exact values for the subject's muscle parameters is almost impossible task. However, sensitivity analysis shows that the tendon slack length is the most critical parameter when applying the Hill-type muscle model. The effect of a change of this parameter on the muscle length force relationship is analyzed in detail.

Angle-Range-Polarization Estimation for Polarization Sensitive Bistatic FDA-MIMO Radar via PARAFAC Algorithm

  • Wang, Qingzhu;Yu, Dan;Zhu, Yihai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.2879-2890
    • /
    • 2020
  • In this paper, we study the estimation of angle, range and polarization parameters of a bistatic polarization sensitive frequency diverse array multiple-input multiple-output (PSFDA-MIMO) radar system. The application of polarization sensitive array in receiver is explored. A signal model of bistatic PSFDA-MIMO radar system is established. In order to utilize the multi-dimensional structure of array signals, the matched filtering radar data can be represented by a third-order tensor model. A joint estimation of the direction-of-departure (DOD), direction-of-arrival (DOA), range and polarization parameters based on parallel factor (PARAFAC) algorithm is proposed. The proposed algorithm does not need to search spectral peaks and singular value decomposition, and can obtain automatic pairing estimation. The method was compared with the existing methods, and the results show that the performance of the method is better. Therefore, the accuracy of the parameter estimation is further improved.

암석절리면 전단강도 예측모델 및 영향요소에 관한 연구 (Study on the Estimation Model of Shear Strength at Rock Joint and Its Influence Factor)

  • 손무락
    • 한국지반공학회논문집
    • /
    • 제39권5호
    • /
    • pp.5-12
    • /
    • 2023
  • 본 연구에서는 암석절리면의 전단강도를 예측하기 위한 기존 여러 모델들에 대해서 조사하고 관련 문제점을 제시함과 더불어 문제점 극복을 위해 새롭게 제안된 모델에 대해서 소개한다. 많은 실험적 결과에 따르면 암석 절리면에서의 전단강도는 절리돌기 각도, 압축강도, 작용 수직응력, 마찰각 및 절리돌기 점착강도, 절리돌기의 점진적 손상을 포함한 많은 복합요인에 따라 달라짐에도 불구하고 기존 강도예측 모델은 이러한 요소들을 충분히 고려하지 못한 점이 있었다. 이러한 문제점을 극복하기 위해 Son(2020)은 새로운 절리면 전단강도 예측모델을 개발하고 그 신뢰성을 실험결과 및 기존 모델과 비교하여 확인한 바 있다. 본 논문에서는 개발모델을 이용하여 절리면 전단강도에 영향을 미치는 여러 요소들에 대해서 조사하고 그 결과를 비교분석 하였다. 본 연구를 통해서 암석절리면 전단강도에 영향을 미치는 요소들에 대하여 보다 자세히 파악할 수 있었다.

얇은 막대 배치작업을 위한 최적의 가중치 행렬을 사용한 실시간 로봇 비젼 제어기법 (Real-time Robotic Vision Control Scheme Using Optimal Weighting Matrix for Slender Bar Placement Task)

  • 장민우;김재명;장완식
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.50-58
    • /
    • 2017
  • This paper proposes a real-time robotic vision control scheme using the weighting matrix to efficiently process the vision data obtained during robotic movement to a target. This scheme is based on the vision system model that can actively control the camera parameter and robotic position change over previous studies. The vision control algorithm involves parameter estimation, joint angle estimation, and weighting matrix models. To demonstrate the effectiveness of the proposed control scheme, this study is divided into two parts: not applying the weighting matrix and applying the weighting matrix to the vision data obtained while the camera is moving towards the target. Finally, the position accuracy of the two cases is compared by performing the slender bar placement task experimentally.