• Title/Summary/Keyword: Joint algorithm

Search Result 896, Processing Time 0.038 seconds

Optimization of long span portal frames using spatially distributed surrogates

  • Zhang, Zhifang;Pan, Jingwen;Fu, Jiyang;Singh, Hemant Kumar;Pi, Yong-Lin;Wu, Jiurong;Rao, Rui
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.227-237
    • /
    • 2017
  • This paper presents optimization of a long-span portal steel frame under dynamic wind loads using a surrogate-assisted evolutionary algorithm. Long-span portal steel frames are often used in low-rise industrial and commercial buildings. The structure needs be able to resist the wind loads, and at the same time it should be as light as possible in order to be cost-effective. In this work, numerical model of a portal steel frame is constructed using structural analysis program (SAP2000), with the web-heights at five locations of I-sections of the columns and rafters as the decision variables. In order to evaluate the performance of a given design under dynamic wind loading, the equivalent static wind load (ESWL) is obtained from a database of wind pressures measured in wind tunnel tests. A modified formulation of the problem compared to the one available in the literature is also presented, considering additional design constraints for practicality. Evolutionary algorithms (EA) are often used to solve such non-linear, black-box problems, but when each design evaluation is computationally expensive (e.g., in this case a SAP2000 simulation), the time taken for optimization using EAs becomes untenable. To overcome this challenge, we employ a surrogate-assisted evolutionary algorithm (SAEA) to expedite the convergence towards the optimum design. The presented SAEA uses multiple spatially distributed surrogate models to approximate the simulations more accurately in lieu of commonly used single global surrogate models. Through rigorous numerical experiments, improvements in results and time savings obtained using SAEA over EA are demonstrated.

A Study for the Estimation of Joint Diameter Distribution Using the Trace Length Distribution from Cylindrical Window Survey (원통형조사창에서의 절리선 길이분포를 이용한 암반 내 절리직경분포 추정에 관한 연구)

  • Jeon, Ki-Hwan;Song, Jae-Joon;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.386-393
    • /
    • 2011
  • This study suggests an algorithm for estimating joint diameter distribution in rock mass from the joint trace length distribution around a circular tunnel. For estimating the joint diameter distribution, the concept of Joint Center Volume (JCV) suggested by Song. (2005) was applied and the calculation method of JCV for the cylindrical window survey was developed by using the complete survey method. The estimated joint diameter distribution was verified against the original joint diameter distribution by Monte-Carlo simulation. It was observed that the estimated joint diameter distribution was converged to the original joint diameter distribution with less than 20% of error.

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF

An efficient solution algorithm of the optimal load distribution for multiple cooperating robots

  • Choi, Myoung-Hwan;Lee, Hum-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.501-506
    • /
    • 1993
  • An efficient solution algorithm of the optimal load distribution problem with joint torque constraints is presented. Multiple robot system where each robot is rigidly grasping a common object is considered. The optimality criteria used is the sum of weighted norm of the joint torque vectors. The maximum and minimum bounds of each joint torque in arbitrary form are considered as constraints, and the solution that reduces the internal force to zero is obtained. The optimal load distribution problem is formulated as a quadratic optimization problem in R, where I is the number of robots. The general solution can be obtained using any efficient numerial method for quadratic programming, and for dual robot case, the optimal solution is given in a simple analytical form.

  • PDF

A Comparative Study on Collision Detection Algorithms based on Joint Torque Sensor using Machine Learning (기계학습을 이용한 Joint Torque Sensor 기반의 충돌 감지 알고리즘 비교 연구)

  • Jo, Seonghyeon;Kwon, Wookyong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.

An Efficient Inverse Kinematics Solution Method for the 6 Axes Robot with Offest Wrist (손목오프셋을 갖는 6축 로봇을 위한 효과적인 역기구학 해 방법)

  • 범진환;임생기;손명현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1421-1429
    • /
    • 1994
  • An algorithm is developed for solving the inverse kinematic problem of a 6-degree-of-freedom robot with a wrist offset for which the closed form inverse solutions are not obtainable, but knowledge of one joint variable allows closed form solutions of the remaining joint variables. The algorithm does not require Forward Kinematics nor Jacobian but uses the implicit kinematic relationships between joint variables and the given hand position. An iterative back substitution method is used to solve the inversion and the optimal conditions of the convergence are incoporated. An example is given to illustrate the concepts, the solution procedure and its convergency.

Installation Error Calibration by Using Levenberg-Marquardt Method on a Cubic Parallel Manipulator (Levenberg-Marquardt 방법을 이용한 육면형 병렬기구의 설치 오차 보정)

  • 임승룡;임현규;최우천;송재복;홍대희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.184-191
    • /
    • 2003
  • A parallel manipulator has high stiffness and all the joint errors on the device are not accumulated at the end -effector unlike a serial manipulator. These are the reasons why the parallel manipulator has been widely used in many fields of industry. In the parallel manipulator, it is very important to predict the exact pose of the end-effector when we want to control the end-effector motion. Installation errors have to be determined in order to predict and control the actual position and pose of the end-effector. This paper presents an algorithm to find the whole 36 joint error components with joint clearance errors and measurement errors considered, when a link length measurement sensor is used and data more than 36 times are acquired for 36 different configurations. A simulation test using this algorithm is performed with a Matlab program which uses the Levenberg-Marquardt method that is known to be efficient for non-linear optimization.

A Genetic Approach for Joint Link Scheduling and Power Control in SIC-enable Wireless Networks

  • Wang, Xiaodong;Shen, Hu;Lv, Shaohe;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1679-1691
    • /
    • 2016
  • Successive interference cancellation (SIC) is an effective means of multi-packet reception to combat interference at the physical layer. We investigate the joint optimization issue of channel access and power control for capacity maximization in SIC-enabled wireless networks. We propose a new interference model to characterize the sequential detection nature of SIC. Afterward, we formulize the joint optimization problem, prove it to be a nondeterministic polynomial-time-hard problem, and propose a novel approximation approach based on the genetic algorithm (GA). Finally, we discuss the design and parameter setting of the GA approach and validate its performance through extensive simulations.

Discontinuous Zigzag Gait Control to Increase the Stability During Walking in Slope (경사면 보행 안정성 향상을 위한 불연속 걸음새 제어)

  • Park, Se-Hoon;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.959-966
    • /
    • 2009
  • An essential consideration when analyzing the gait of walking robots is their ability to maintain stability during walking. Therefore, this study proposes a vertical waist-jointed walking robot and gait algorithm to increase the gait stability margin while walking on the slope. First, the energy stability margin is compared according to the posture of the walking motion on slope. Next, a vertical waist-jointed walking robot is modeled to analyze the stability margin in given assumption. We describe new parameters, joint angle and position of a vertical waist-joint to get COG (center of gravity of a body) in walking. Finally, we prove the superiority of the proposed gait algorithm using simulation and conclude the results.

Iterative Symbol Decoding of Variable-Length Codes with Convolutional Codes

  • Wu, Hung-Tsai;Wu, Chun-Feng;Chang, Wen-Whei
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.40-49
    • /
    • 2016
  • In this paper, we present a symbol-level iterative source-channel decoding (ISCD) algorithm for reliable transmission of variable-length codes (VLCs). Firstly, an improved source a posteriori probability (APP) decoding approach is proposed for packetized variable-length encoded Markov sources. Also proposed is a recursive implementation based on a three-dimensional joint trellis for symbol decoding of binary convolutional codes. APP channel decoding on this joint trellis is realized by modification of the Bahl-Cocke-Jelinek-Raviv algorithm and adaptation to the non-stationary VLC trellis. Simulation results indicate that the proposed ISCD scheme allows to exchange between its constituent decoders the symbol-level extrinsic information and achieves high robustness against channel noises.