• Title/Summary/Keyword: Joint Structure

Search Result 1,713, Processing Time 0.034 seconds

On Pricing Equity-Linked Investment Products with a Threshold Expense Structure

  • Bae, Tae-Han;Ko, Bang-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.621-633
    • /
    • 2010
  • This paper considers a certain expense structure where a vendor of equity-linked investment product will collect its expenses continuously from the investor's account whenever the investment performance exceeds a certain threshold level. Under the Black-Scholes framework, we derive compact convolution formulas for evaluating the total expenses to be collected during the investment period by using the joint Laplace transform of the Brownian motion and its excursion time. We provide numerical examples for illustration.

Behavior and Strength of Wall-Slab Connection in SC Structure (SC구조 벽-바닥 접합부의 내력 및 거동 특성)

  • Kim, Hyeong Gook;Kim, Woo Bum;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.347-354
    • /
    • 2008
  • Steel plate-concrete (SC) structure has recently been used in nuclear power structure because of its construction efficiency. In this study, experimental and analytical study to investigate the behavior of the SC structure's wall slab connection was carried out. Experiments were performed for typical SC and RC connections in order to examine the basic difference between each structure. Finite element analysis was performed and the result of the analysis was found to closely reflect the experimental result. By varying the thickness of the shear plate and friction coefficients and the distance of applied load from the wall, the influence of the parameters on the joint strength and failure modes were examined. Finally, it was confirmed that the joint strength formula proposed in th this research gives conservative results.

Static behavior of steel tubular structures considering local joint flexibility

  • Wang, Yamin;Shao, Yongbo;Cao, Yifang
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.425-439
    • /
    • 2017
  • As a thin-walled structure, local joint flexibility (LJF) in a tubular structure is prominent, and it may produce significant effect on the static performance for the overall structure. This study presents a simplified analytical model to analyze the static behavior for a steel tubular structure with LJF. The presented model simplifies a tubular structure into a frame model consisted of beam elements with considering the LJFs at the connections between any two elements. Theoretical equations of the simplified analytical model are deduced. Through comparison with 3-D finite element results of two typical planar tubular structures consisted of T- and Y-joints respectively, the presented method is proved to be accurate. Furthermore, the effect of LJF on the overall performance of the two tubular structures (including the deflection and the internal forces) is also investigated, and it is found from analyses of internal forces and deformation that a rigid connection assumption in a frame model by using beam elements in finite element analysis can provide unsafe and inaccurate estimation.

Effect of joint Details on Fatigue Properties of a Slot Structure

  • Youn, J.G.;Kim, H.S.;Park, D.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2001
  • Effect of the joint details on the stress distribution over a slot structure has been studied in order to improve its fatigue life using a finite element analysis. The joint details of interest are the radius and height of scallop at the stiffener as well as the mis-alignment between the stiffener and longitudinal member. For a slot structure currently used, the stiffener heel is subjected to the maximum stress for a given external load, where is a potential fatigue crack initiation site. The stresses at the stiffener heel and toe decrease both by increasing the scallop radius and more significantly by increasing the mis-alignment while no notable effect of the scallop height on it is appreciated. A proper combination of these factors makes it possible to reduce the stresses at the stiffener heel and In, theoretically, more than 50%. This is attributed to the modification of the stress distribution over the slot structure including the transition of the maximum stressed region from the stiffener heel to the slot surface of the transverse web. Such then results in a g[eat improvement of the fatigue life of the slot structure.

  • PDF

Joint Element Structure Method on the Subway Box Structure unere Railroad (철도하부 가도교 설치에 대한 JES공법)

  • Pi, Tae-Hee;Cho, Kook-Hwan;SaGong, Myung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.973-981
    • /
    • 2008
  • This document presents the JES(Joint Element Structure) method that has been adopted for the firs time in our country for the construction of the structure crossing under the railroad without open excavation. Front Jacking Method, Tubular Roof Construction Method, New Tubular Roof Method and Joint Element Structure Method are commonly used for the construction of structures crossing under the railroad. JES Method, frequently used in Japan recently, is a new method to construct the structures crossing under the railroad in a safe manner and in a relatively short period of time by utilizing the steel elements with the joints through which the load in the vertical angle to the axial direction is transferred to the next element. The elements are tied to each other through the joints to form the permanent walls of a Rahmen structure under the road without open excavation and without limitation to the length in a convenient way. Through the case study in the project of a Subway Box Culvert Improvement for the Gyeonguiseon Railroad in front of Yonsei University using the JES Method, the cost and period of construction in various types of soil is investigated compared to the Front Jacking Method. Furthermore, by analyzing the results of instrumentation measurements carried out throughout the construction, comparison between the actual displacement in the ground and the predicted displacement in the design is made to provide the considerations to be counted for the design. In conclusion, comparison in the field of economic feasibility, constructability and safety between the JES Method and Front Jacking Method, which is most frequently adopted in our country at present, is made to present the JES Method as a new alternative for the non-open excavation construction method for the structures crossing under the railway.

  • PDF

A Study on Dynamic Modelling of Joints in Plate Structure (평판구조 결합부의 동적 모델링에 관한 연구)

  • 이장무;이재운;성명호
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.61-66
    • /
    • 1992
  • In general, structures have various joints such as bonded joint, bolted joint, bearing joint and welded joint. Dynamic modelling of such joints has been the current topic of interest. In this study, the dynamic modelling of plate structures with bonded joint was investigated by using modal testing, sensitivity analysis and condensation-inverse condensation method of FEM. A proper modelling procedure was proposed and the validity was verified.

  • PDF

Structural Joint Damage Assessment Using Neural Networks (신경망을 이용한 구조물 접합부의 손상도 추정)

  • 방은영;이진학;윤정방
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.35-46
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks, The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

Measurement of Dynamic Strains on Composite T-Joint Subjected to Hydrodynamic Ram Using PVDF Sensors (PVDF 센서를 이용한 수압램 하중을 받는 복합재 T-Joint의 동적 변형률 측정)

  • Go, Eun-Su;Kim, Dong-Geon;Kim, In-Gul;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.238-245
    • /
    • 2018
  • The hydrodynamic ram (HRAM) phenomenon is one of the main types of ballistic battle damages of a military aircraft and has great importance to airframe survivability design. The HRAM effect occurs due to the interaction between the fluid and structure, and damage can be investigated by measuring the pressure of the fluid and the dynamic strains on the structure. In this paper, HRAM test of a composite T-Joint was performed using a ram simulator which can generate HRAM pressure. In addition, calibration tests of PVDF sensor were performed to determine the circuit capacitance and time constant of the measurement system. The failure behavior of the composite T-Joint due to HRAM pressure was examined using the strain gauges and a PVDF sensor which were attached to the surface of the composite T-Joint.

Application of Condensed Joint Matrix Method to the Joint Structure of Vehicle Body (축약 행렬법을 적용한 차체 결합부 해석)

  • 서종환;서명원;양원호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.9-16
    • /
    • 1998
  • The joint characteristics are necessary to be determined in the early stage of the vehicle body design. Researches on identification of joints in a vehicle body have been performed until the recent year. In this study, the joint characteristics of vehicle struct- ure were expressed as condensed forms from the full joint stiffness and mass matrix. The condensed joint stiffness and mass matrix were applied to typical T-type and Edge-type joints, and the usefulness was confirmed. In addition, those were applied to center pillar and full vehicle body to validate the practical application.

  • PDF

Strength Evaluation of Adhesive Bonded Joint for Light Weight Structure by T-Peel Joint Test (T형 이음 접합에 의한 경량구조물용 접착이음강도의 평가)

  • 이강용;공병석;우형표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.56-65
    • /
    • 1998
  • The bonding strength evaluation of the light weight materials for an electrical vehicle has been performed through the T-peel joint test in which the design paramete- rs such as joint style, adherend type, adherend thickness, adhesive thickness, and adhesive type are considered. It is experimentally observed that the peel strength of joint increases with the increase of the adherend thickness. With the increase of the adhesive thickness, however, the peel strength of joint increases a little. Aluminum-FRP adherend combination shows such higher peel strength than that of Aluminum-Aluminum adherend combination. For the adhesive bonded joint, the results of FEM analysis agree with those of experiment. The adhesive bonded joint reinfored with a rivet gives higher peel strength than that of the joint without rivet.

  • PDF