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Abstract

This paper considers a certain expense structure where a vendor of equity-linked investment product will

collect its expenses continuously from the investor’s account whenever the investment performance exceeds

a certain threshold level. Under the Black-Scholes framework, we derive compact convolution formulas for

evaluating the total expenses to be collected during the investment period by using the joint Laplace trans-

form of the Brownian motion and its excursion time. We provide numerical examples for illustration.
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1. Introduction

In this paper we consider a new method of charging expenses on equity-linked investment products

such as mutual funds or variable annuities. Under the new system, which we call a threshold expense

structure, the expenses are supposed to be withdrawn continuously from the investor’s account only

when the investment performance exceeds a prespecified threshold level. To fix idea, we denote by

S(t) an index of the investment performance at time t or the account value at time t if it were not

for any expense. And let F (t) denote the net account value at time t after deducting the threshold

expenses. The threshold expense structure stipulates that a vendor of the investment product will

collect expenses at a continuous rate of c whenever S(t) exceeds the threshold level K. An explicit

link between the two processes is given by the relation,

F (t) = S(t) exp

{
−c
∫ t

0

I (S(u) > K) du

}
, (1.1)

where I(·) is an indicator function. In Figure 1, we illustrate a sample path of S(t) and F (t) when

S(0) = F (0) = 100 and K = 110. It is observable from the figure that the discrepancy between

the two processes, due to the threshold expense structure, becomes larger as the so-called excursion

time (or the occupation time) of S(t) staying above K becomes longer.

A motivation behind the threshold expense structure is that, in many cases, investors feel it in-

tolerable to pay expenses for their losing-money investment accounts and our marketing idea of
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Figure 1.1. A sample path of S(t) and F (t) when S(0) = F (0) = 100 and K = 110

charging expenses according to the investment performance level might sound appealing to them.

The relevant questions then are how one should evaluate the total expenses to be collected for a

given pair of (K, c) or how one can find the equivalent pairs of (K, c) for a given target amount

of expense. To answer these questions, we derive pricing formulas by employing the risk neutral

valuation method. The evaluation strategy is simple: under the Black-Scholes (1973) framework,

we assume that S(t) follows a geometric Brownian motion, i.e.,

S(t) = S(0) exp {µt+ σW (t)} , (1.2)

where {W (t)} is a standard Brownian motion, and µ and σ are constants, σ > 0. Then, we

can evaluate the total expenses to be collected during the investment periods as the discounted

expectation of the discrepancy between the two processes S(t) and F (t) at maturity T under the

risk-neutral measure or the equivalent martingale measure Q.

To those familiar with the classical ruin theory, our problem of pricing the threshold expenses might

be reminiscent of an optimal dividend strategy problem. For example, Gerber and Shiu (2006a,

2006b) considered a threshold strategy where dividends are paid at a constant rate whenever the

surplus process is above a certain threshold level. In some sense, our problem could be thought of as

reconstructing this ruin problem from the perspective of financial pricing. That is, dividend payout

(or surplus) corresponds to expense withdrawal (or investment performance). However, there exists

a fundamental difference between the two problems: in the ruin problem, the main purpose is to find

an optimal dividend barrier in order to maximize the expected discounted dividends until it ruins;

in our problem, to evaluate the total expenses to be collected for a fixed duration of investment.

Thus the mathematics used are quite different.

In the derivation of our pricing formulas, we exploit some known results (Hugonnier, 1999; Borodin

and Salminen, 2002) about the joint Laplace transform of a standard Brownian motion and its

excursion time. The readers are referred to Jeanblanc et al. (1997, 2009) where the derivation

of the joint pdf of Brownian motion and its excursion time or several useful expressions for the
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Feynman-Kac formulas of processes associated with Brownian motion can be found. For a more

general treatment of these topics, we refer the reader to Karatzas and Shreve (1991) and Shiryayev

(1999) among others.

The paper is organized as follows: in Section 2, we introduce some basic preliminaries and reformu-

late the pricing problem into the one to which the known results about the joint Laplace transform

are readily applicable; in Sections 3 and 4, we derive the pricing formulas for a constant threshold

or an exponentially growing threshold; in Section 5, we numerically illustrate the results; and, in

Appendix, we outline the straightforward proof of proposition 3.2.

2. Modeling Framework

Let us first consider a filtered probability space {Ω,F , {Ft},P}, where the filtration is generated by

a standard Brownian motion {W (t), t ≥ 0}. As in (1.2), we assume that S(t) follows a geometric

Brownian motion under the physical measure P. We also assume that the continuously compounded

risk-free interest rate, r, is constant and that all dividends from the underlying investment product

are reinvested. With

B(t) = W (t)− r − σ2/2− µ
σ

t,

(1.2) becomes

S(t) = S(0) exp

{(
r − σ2

2

)
t+ σB(t)

}
. (2.1)

It is well-known that, under the risk-neutral measure Q, the stochastic process {B(t)} is a standard

Brownian motion and the discounted process {e−rtS(t)} is a martingale. See, e.g., Shreve (2004).

We apply the Girsanov theorem to change the measure Q to an equivalent measure Q̃ on the

filtration {Ft}. By denoting B̃(t) = B(t) + νt and ν = σ−1(r− σ2/2), the process S(t) of (2.1) can

be written as

S(t) = S(0) exp
{
σB̃(t)

}
. (2.2)

The Radon-Nikodym derivative is given by

dQ

dQ̃

∣∣∣
t

:= M(t) = exp

{
νB(t) +

ν2

2
t

}
.

Then {M(t)} is a Q̃-martingale and {B̃(t)} is a standard Brownian motion under the transformed

measure Q̃.

Let us denote the excursion time of a standard Brownian motion W (t) above level l by

Λ(t; l) =

∫ t

0

I(W (u) > l)du.

Then, by using relation (2.2) and letting k = σ−1 log(K/S(0)), the net account value at time t in

(1.1) can be rewritten as

F (t) = S(0) exp

{
σB̃(t)− c

∫ t

0

I (S(u) > K)du

}
. (2.3)
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Now we apply the fundamental theorem of asset pricing. That is, by calculating the discounted

payoff from the net account at maturity T under the risk-neutral measure Q, we can evaluate the

net account value at time t as follows:

Θ(t;K, c) = EQ
t

[
e−r(T−t)F (T )

]
=

EQ̃
t

[
e−r(T−t)F (T )M(T )

]
EQ̃
t [M(T )]

= S(0) exp

{
−
(
r +

ν2

2

)
(T − t)− νB̃(t)

}
EQ̃
t

[
exp

{
(σ + ν)B̃(T )− cΛ(T ; k)

}]
, (2.4)

where Et[·] represents the conditional expectation operator with respect to Ft.
Note that the process Λ(t; k) does not have the Markov property but the joint process (B̃(t),Λ(t; k))

does (cf. Meyer, 2001). Hence, denoting the joint Laplace transform of (B̃(T )− B̃(t), Λ(T − t; k−
B̃(t))) under the measure Q̃ by

L
[
α, β;T − t, k − B̃(t)

]
= EQ̃

t

[
exp

{
−α

(
B̃(T )− B̃(t)

)
− βΛ

(
T − t; k − B̃(t)

)}]
,

we can express (2.4) as

Θ (t;K, c) = θ(t, T )L
[
−(σ + ν), c;T − t, k − B̃(t)

]
. (2.5)

Here, θ(t, T ) = S(0) exp{−(r+ν2/2)(T − t)+σB̃(t)−c
∫ t
0

I(B̃(u) > k)du} and we slightly abuse the

notation by writing Λ(T − t; k− B̃(t)) =
∫ T−t
0

I(B̃(t+ u)− B̃(t) > k − B̃(t)) under the conditional

expectation operator. Now, reapplying the fundamental theorem of asset pricing, we can evaluate

the time-t price of the total expenses to be collected during the time period between t and T as the

discounted expectation of S(T )− F (T ) under the Q-measure, i.e.,

EQ
t

[
e−r(T−t) {S(T )− F (T )}

]
= S(t)−Θ (t;K, c) . (2.6)

Therefore, our pricing problem reduces to finding an expression for Θ (t;K, c) or the joint Laplace

transform L[α, β;T − t, k − B̃(t)].

3. A Constant Threshold Case

In this section, we derive an expression for Θ (t;K, c) in convolution form by using the joint Laplace

transform of a standard Brownian motion W (t) and its excursion time above level l, Λ(t; l).

First, we consider the case when the level l is strictly positive. Note that the joint Laplace trans-

form has a form of the Feynman-Kac formula. In determining the distribution of certain Wiener

functionals, Kac (1949) showed the following result: For a Borel function h : R→ R+ and η > 0,∫ ∞
0

e−ηtE [h(W (t)) exp {−λΛ(t; l)}] dt =

∫ ∞
−∞

h(y)u (η, λ, y) dy, (3.1)

where u(x) = u(η, λ, x) is the unique solution of the Sturm-Liouville equation

1

2
u′′(x) = (η + λI(x > l))u(x), x 6= 0, (3.2)
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provided that u′(x) exists and is locally bounded for all x 6= 0, and that u(x) vanishes at ±∞ and

that u′(0+)−u′(0−) = −2 (cf. Theorem 2 of Hugonnier, 1999). Then, considering a Borel function

h(y) = I(y ∈ [x, x+ dx)) in (3.1), we obtain the Laplace transform,

L[η] =

∫ ∞
0

e−ηtE [I (W (t) ∈ [x, x+ dx)) exp {−λΛ(t; l)}] dt

=

∫ ∞
−∞

I (y ∈ [x, x+ dx))u (η, λ, y) dy = u (η, λ, x) dx

and the inverse Laplace transform,

L−1
η [u(η, λ, x)dx] = E [I (W (t) ∈ [x, x+ dx)) exp {−λΛ(t; k)}] . (3.3)

The solution to the Sturm-Liouville equation of (3.2) is given as follows.

Lemma 3.1. Suppose l ≥ 0, λ ≥ 0 and η ≥ 0. Then,

L[η] = u(η, λ, x)dx

=


√

2
√
η +
√
η + λ

e−(x−l)
√

2(η+λ)e−l
√
2ηdx, (x ≥ l),

√
η −
√
η + λ

√
2η
(√
η +
√
η + λ

)e−(2l−x)
√
2ηdx+

1√
2η
e−|x|

√
2ηdx, (x ≤ l).

(3.4)

Proof. See Proposition 5 of Hugonnier (1999). �

In what follows, the convolution operator is defined as

f(t) ∗ g(t) =

∫ t

0

f(s)g(t− s)ds =

∫ t

0

f(t− s)g(s)ds

or, following the usual convention, it could be treated as f(t) ∗ g(t) =
∫∞
−∞ f(s)g(t− s)ds but then

we would need an extra restriction that f, g are supported on the positive real numbers.

Proposition 3.1. (Eq. 1.4.7 of Borodin and Salminen, 2002) Suppose l > 0 and λ ≥ 0. Then,

E [I (W (t) ∈ [x, x+ dx)) exp {−λΛ(t; l)}]

=


(x− l)l
λ(2π)

3
2

(
1− e−λt

t
3
2

)
∗
(
e−λt

t
3
2

e−
(x−l)2

2t

)
∗
(

1

t
3
2

e−
l2

2t

)
dx, (x > l),

1√
2πt

(
e−

x2

2t − e−
(2l−x)2

2t

)
dx+

2l − x
2πλ

(
1− e−λt

t
3
2

)
∗
(

1

t
3
2

e−
(2l−x)2

2t

)
dx, (x ≤ l).

(3.5)

The formula (3.5) appears in Borodin and Salminen (2002) without proof, so we briefly outline the

proof below.

Proof. Consider the following Laplace transform:∫ ∞
0

e−ηt
(

1− e−λt

t
3
2

)
dt = 2

√
π
(√

η + λ−√η
)

∫ ∞
0

e−ηt
(

1√
2πt

e−
a2

2t

)
dt =

1√
2η
e−a
√

2η, (a ≥ 0)

∫ ∞
0

e−ηt

 a√
2π

e−
a2

2t

t
3
2

 dt = e−a
√
2η, (a ≥ 0). (3.6)
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Rearranging the terms of (3.4) according to the Laplace transform formulas of (3.6) and then

applying the inverse Laplace transform given in (3.3) establish the proposition. �

By performing a series of tedious integrations, we can obtain the following joint Laplace transform

of a standard Brownian motion and its excursion time.

Proposition 3.2. Suppose l > 0 and λ ≥ 0. Then,

L [α, λ; t, l] = E [exp {−αW (t)− λΛ(t; l)}]

=

∫ ∞
−∞

e−αxE [I (W (t) ∈ [x, x+ dx)) exp {−λΛ(t; l)}]

= (F1 ∗ g1 ∗ h1) (t) + (K1 ∗ g1) (t) + J1(t), (3.7)

where

F1(t;α, λ, l) = le−αl−λt
{

1√
t
−
√

2παe
α2t
2 Φ

(
−α
√
t
)}

,

K1(t;α, λ, l) =
√

2πe−αl

e−
l2

2t

√
t

+
√

2παe
α2t
2
−αlΦ

(
αt− l√

t

) ,

J1(t;α, λ, l) = e
α2t
2

{
Φ

(
αt+ l√

t

)
− e−2αlΦ

(
αt− l√

t

)}
,

g1(t;λ) =
1− e−λt

λ (2πt)
3
2

h1(t; l) =
e−

l2

2t

t
3
2

and Φ(·) denotes the standard normal cumulative distribution function.

Proof. See Appendix. �

Here we deliberately omitted the arguments of F,K, J, g and h for notational simplicity.

Next we consider the case when the threshold level l is negative. Because this case can be treated

similarly as in the positive threshold case, we only state the corresponding results without proof.

Lemma 3.2. Suppose l ≤ 0, λ ≥ 0 and η ≥ 0. Then,

L[η] = u(η, λ, x)dx

=


√
η + λ−√η√

2(η + λ)
(√
η + λ+

√
η
)e(2l−x)√2(η+λ)dx+

1√
2(η + λ)

e−|x|
√

2(η+λ)dx, (x ≥ l),
√

2
√
η +
√
η + λ

e(x−l)
√
2ηel
√

2(η+λ)dx, (x ≤ l).
(3.8)

Proposition 3.3. (Eq. 1.4.7 of Borodin and Salminen, 2002) Suppose l < 0 and λ ≥ 0. Then,

E [I (W (t) ∈ [x, x+ dx)) exp {−λΛ(t; l)}]
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=


e−λt√

2πt

(
e−

x2

2t − e−
(2l−x)2

2t

)
dx+

x− 2l

2πλ

(
1− e−λt

t
3
2

)
∗
(
e−λt

t
3
2

e−
(2l−x)2

2t

)
dx, (x ≥ l),

(x− l)l
λ(2π)

3
2

(
1− e−λt

t
3
2

)
∗
(
e−λt

t
3
2

e−
l2

2t

)
∗
(

1

t
3
2

e−
(l−x)2

2t

)
dx, (x < l).

(3.9)

Proposition 3.4. Suppose l < 0 and λ ≥ 0. Then,

L [α, λ; t, l] = (F2 ∗ g2 ∗ h2) (t) + (K2 ∗ g2) (t) + J2(t), (3.10)

where

F2(t;α, λ, l) = −le−αl
{

1√
t

+
√

2παe
α2t
2 Φ

(
α
√
t
)}

,

K2(t;α, λ, l) =
√

2πe−αl−λt

e−
l2

2t

√
t
−
√

2παe
α2t
2
−αlΦ

(
l − αt√

t

) ,

J2(t;α, λ, l) = e
α2t
2
−λt

{
Φ

(
−αt− l√

t

)
− e−2αlΦ

(
−αt+ l√

t

)}
,

g2(t;λ) =
1− e−λt

λ (2πt)
3
2

,

h2(t;λ, l) =
e−λt

t
3
2

e−
l2

2t .

Finally, when l = 0, we can solve the problem similarly by inverting the Laplace transform in

Lemma 3.1 or Lemma 3.2. Thus we obtain the following.

Proposition 3.5. (Eq. 1.4.7 of Borodin and Salminen, 2002) Suppose l = 0 and λ ≥ 0. Then,

E [I (W (t) ∈ [x, x+ dx)) exp {−λΛ(t; l)}]

=



x

2πλ

(
1− e−λt

t
3
2

)
∗
(
e−λt

t
3
2

e−
x2

2t

)
dx, (x > l),

−x
2πλ

(
1− e−λt

t
3
2

)
∗
(

1

t
3
2

e−
x2

2t

)
dx, (x < l),

1− e−λt
√

2πλt
3
2

dx, (x = l).

(3.11)

Proposition 3.6. Suppose l = 0 and λ ≥ 0. Then,

L [α, λ; t, l] = (K1 ∗ g1) (t) + (K2 ∗ g1) (t). (3.12)

Here the functions K1, K2 and g1 are defined as in Propositions 3.2 and 3.4.

Now we combine the results of this section with (2.6) to obtain the following expression for the

time-t value of the net account:

Θ (t;K, c) = θ(t, T )L
[
−(σ + ν), c;T − t, k − B̃(t)

]

= θ (t, T )×


(F1 ∗ g1 ∗ h1)(T − t) + (K1 ∗ g1)(T − t) + J1(T − t), if S(t) < K,

(F2 ∗ g2 ∗ h2)(T − t) + (K2 ∗ g1)(T − t) + J2(T − t), if S(t) > K,

(K1 ∗ g1)(T − t) + (K2 ∗ g1)(T − t), if S(t) = K,

(3.13)

where θ(t, T ) = S(0) exp{−(r + ν2/2)(T − t) + σB̃(t)− c
∫ t
0

I(B̃(u) > k)du}.
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Remark 3.1.

(i) In some extreme cases, one may check the validity of (3.13) easily. For instance, if K = ∞,

there would be no expenses to be collected. This, in turn, implies that

Θ(t = 0;K =∞, c) = S(0) = F (0).

It can be immediately shown that (3.13) satisfies this. That is, in this case, the first two terms

of (3.13), F1 ∗ g1 ∗ h1 and K1 ∗ g1, vanish and the last term reduces to S(0).

(ii) By using the relation (2.2), θ(t, T ) can be expressed in terms of the process {S(t)} or {F (t)}
as

θ(t, T ) = S(t) exp

{
−
(
r +

ν2

2

)
(T − t)− c

∫ t

0

I (S(u) > K) du

}
= F (t) exp

{
−
(
r +

ν2

2

)
(T − t)

}
,

which is a function of observables as of time t.

4. An Exponentially Growing Threshold Case

In parallel with Sections 2 and 3, we derive the pricing formulas for the total expenses when the

threshold level is an exponentially growing function of time. In this case, the link between S(t) and

F (t) is given by

F (t) = S(t) exp

{
−c
∫ t

0

I
(
S(u) > S(0)eβu

)
du

}
, (4.1)

for some constant β > 0. Taking the time value of money into consideration, investors might think

this expense structure of (4.1) more attractive than the previous one.

As in Section 2, we apply the Girsanov theorem to change measure from the risk neutral measure

Q to an equivalent measure Q̂. Denoting B̂(t) = B(t) + ωt and ω = σ−1(r − σ2/2 − β), we can

rewrite the process S(t) of (2.1) as

S(t) = S(0) exp
{
σB̂(t)

}
. (4.2)

The Radon-Nikodym derivative is given by

dQ

dQ̂

∣∣∣
t

:= N(t) = exp

{
ωB(t) +

ω2

2
t

}
.

Then {N(t)} is a Q̂-martingale and {B̂(t)} is a standard Brownian motion under the transformed

measure Q̂.

Changing the relation (4.1) into the form of (2.3), we get

F (t) = S(0)eβt exp

{
σB̂(t)− c

∫ t

0

I
(
B̂(u) > 0

)
du

}
.

Now it follows from the fundamental theorem of asset pricing that the time-t value of the net

account of (4.1) is calculated as

Ψ(t;β, c) = EQ
t

[
e−r(T−t)F (T )

]
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=
EQ̂
t

[
e−r(T−t)F (T )N(T )

]
EQ̂
t [N(T )]

= ψ(t, T )L
[
− (σ + ω) , c;T − t,−B̂(t)

]
. (4.3)

Here

ψ(t, T ) = S(0) exp

{
βT −

(
r +

ω2

2

)
(T − t) + σB̂(t)− c

∫ t

0

I
(
B̂(u) > 0

)
du

}
or

ψ(t, T ) = S(t) exp

{
β(T − t)−

(
r +

ω2

2

)
(T − t)− c

∫ t

0

I
(
B̂(u) > 0

)
du

}
= F (t) exp

{
β(T − t)−

(
r +

ω2

2

)
(T − t)

}
and L[−(σ + ω), c;T − t,−B̂(t)] denotes the joint Laplace transform as before, i.e.,

L[−(σ + ω), c;T − t,−B̂(t)] = EQ̂
t

[
exp

{
(σ + ω)

(
B̂(T )− B̂(t)

)
− cΛ

(
T − t;−B̂(t)

)}]
.

Now, combining (4.3) with the joint Laplace transform formulas from Section 3, we obtain the

following pricing formula for the net account value at time t:

Ψ(t;β, c)

= ψ(t, T )L
[
− (σ + ω) , c;T − t,−B̂(t)

]
= ψ (t, T )×


(F1 ∗ g1 ∗ h1) (T − t) + (K1 ∗ g1) (T − t) + J1(T − t), if S(t) < S(0)eβt,

(F2 ∗ g1 ∗ h2) (T − t) + (K2 ∗ g1) (T − t) + J2(T − t), if S(t) > S(0)eβt,

(K1 ∗ g1) (T − t) + (K2 ∗ g1) (T − t), if S(t) = S(0)eβt.

(4.4)

As in (2.6), the time-t price of the total expenses to be collected for an exponentially growing

threshold can be calculated as

EQ
t

[
e−r(T−t) {S(T )− F (T )}

]
= S(t)−Ψ (t;β, c) . (4.5)

Remark 4.1. Because the case when β = 0 is equivalent to the one with K = S(0), we may verify

the formula (4.4) through (3.13).

5. Numerical Examples

This section numerically illustrates our previous results. In the following examples, we have assumed

that r = 5% and S(0) = F (0) = 100 and used numerical integrations (NIntegrate in Mathematica

6.0) to compute the convolution formulas of (3.13) and (4.4). First, we consider the case where

the threshold level is a fixed constant. Table 5.1 shows the numbers calculated from (3.13) for

various combinations of K,T, c and σ. As can be expected, the total expenses are an increasing

function of both T and c but a decreasing function of K. However, the effect of the volatility on

the net account (or the total expenses) is not immediately clear. Notice that, when K = 110, the

time-0 values of the net account decrease as the volatility increases from 20% to 30%. But, when
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Table 5.1. The time-0 values of net account (total expenses): A constant threshold case, r = 5%, S(0) = F (0) = 100

c = 0.01 c = 0.02 c = 0.03 c = 0.04

σ = 0.2 σ = 0.3 σ = 0.2 σ = 0.3 σ = 0.2 σ = 0.3 σ = 0.2 σ = 0.3

T = 1
99.70 99.63 99.41 99.26 99.12 98.90 98.83 98.54

(0.30) (0.37) (0.59) (0.74) (0.88) (1.10) (1.17) (1.46)

K = 110 T = 3
98.61 98.48 97.24 96.99 95.91 95.54 94.60 94.12

(1.39) (1.52) (2.76) (3.01) (4.09) (4.46) (5.40) (5.88)

T = 5
97.29 97.16 94.68 94.42 92.17 91.79 89.75 89.25

(2.71) (2.84) (5.32) (5.58) (7.83) (8.21) (10.25) (10.75)

T = 1
99.41 99.42 98.83 98.84 98.25 98.27 97.67 97.70

(0.59) (0.58) (1.17) (1.16) (1.75) (1.73) (2.33) (2.30)

K = 100 T = 3
98.06 98.10 96.16 96.24 94.31 94.32 92.51 92.66

(1.94) (1.90) (3.84) (3.76) (5.69) (5.68) (7.49) (7.34)

T = 5
96.59 96.67 93.32 93.48 90.19 90.42 87.18 87.48

(3.41) (3.33) (6.68) (6.52) (9.81) (9.58) (12.82) (12.52)

T = 1
99.12 99.19 98.27 98.40 97.43 97.63 96.59 96.86

(0.88) (0.81) (1.73) (1.60) (2.57) (2.37) (3.41) (3.14)

K = 90 T = 3
97.54 97.71 95.16 95.49 92.84 93.33 90.58 91.22

(2.46) (2.29) (4.84) (4.51) (7.16) (6.67) (9.42) (8.78)

T = 5
95.94 96.18 92.06 92.54 88.36 89.06 84.83 85.73

(4.06) (3.82) (7.94) (7.46) (11.64) (10.94) (15.17) (14.27)

Figure 5.1. The effect of volatility on the time-0 value of net account: r = 3%, T = 3, S(0) = F (0) = 100 and c = 2%

K = 90, the values increase as the volatility increases. For a moderate range of the volatility, this

can be explained as follows: if K = 110, it is more likely that S(t) goes above the threshold level as

the volatility increases and there would be more chance of the expenses being withdrawn from the

investor’s account. On the other hand, if K = 90, then the account is already above the threshold

at the beginning and it is less likely that S(t) will stay above the threshold (less expenses) as the

volatility increases. Figure 5.1 depicts the effect of volatility on the total expenses with σ ranging

from 10% to 100%.

Next we consider the case where the threshold level grows exponentially in the form of (4.1). Table

5.2 shows the values calculated from formula (4.4) with β = 1%, 3% and 5%. As can be expected,
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Table 5.2. The time-0 values of net account (total expenses): An exponentially growing threshold case, r = 5%, S(0) =

F (0) = 100 and c = 2%

β = 0.01 β = 0.03 β = 0.05

σ = 0.2 σ = 0.3 σ = 0.2 σ = 0.3 σ = 0.2 σ = 0.3

T = 1
98.85 98.86 98.90 98.89 98.95 98.93

(1.15) (1.14) (1.10) (1.11) (1.05) (1.07)

T = 3
96.28 96.33 96.54 96.49 96.80 96.67

(3.72) (3.67) (3.46) (3.51) (3.20) (3.33)

T = 5
93.56 93.64 94.07 93.99 94.62 94.34

(6.44) (6.36) (5.93) (6.01) (5.38) (5.66)

Table 5.3. The time-0 values of net account (total expenses): Expenses are withdrawn irrespective of investment performance,
r = 5%, S(0) = F (0) = 100

c = 0.01 c = 0.02 c = 0.03 c = 0.04

T = 1
99.01 98.02 97.05 96.08

(0.99) (1.98) (2.95) (3.92)

T = 3
97.05 94.18 91.39 88.69

(2.95) (5.82) (8.61) (11.31)

T = 5
95.12 90.48 86.07 81.87

(4.88) (9.52) (13.93) (18.13)

the total expenses are an increasing function of T but a decreasing function of β. We also comment

that a similar argument used in the constant threshold case could be employed to explain the effect

of the volatility.

Finally, we consider the case where the expenses are withdrawn at a continuous rate of c irrespective

of the investment performance, i.e.,

F (t) = S(t)e−ct.

Table 5.3 shows the time-0 values of the net account (or the total expenses) for some combinations

of T and c. In this case, one may find a closed-form pricing formula independent of the volatility

level. See, for example, Milevsky and Posner (2001).

6. Conclusion

In this paper, we have derived pricing formulas for the total expenses of equity-linked investment

products if the expenses are collected continuously from the investor’s account whenever the in-

vestment performance exceeds a certain threshold level. Although expressed in convolution form,

the pricing formulas did not require too much computational burden. The expense structure sug-

gested has an appealing feature in the sense that, if the investment performs poorly, the investors

do not have to pay expenses on their account. Of course, the deficit on the vendor’s side would be

compensated as a greater incentive for the threshold exceeding performance.

Appendix

Proof of Proposition 3.2. We first let

f1(x, t) =
l(x− l)
t
3
2

e−λte−
(x−l)2

2t ,
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j1(x, t) =
1√
2πt

{
e−

x2

2t − e−
(2l−x)2

2t

}
,

k1(x, t) =

√
2π(2l − x)

t
3
2

e−
(2l−x)2

2t .

Then it would follow from Proposition 3.1. that

L [α, λ; t, l] =

∫ ∞
l

e−αx
∫ t

0

∫ u

0

f1(x, s)g1(u− s)h1(t− u)ds du dx

+

∫ l

−∞
e−αx

∫ t

0

k1(x, s)g1(t− s)dsdx+

∫ l

−∞
e−αxj1(x, t)dx. (A.1)

By changing the order of integration, the first integral of (A.1) is rewritten as∫ t

0

∫ u

0

{∫ ∞
l

e−αxf1(x, s)dx

}
g1(u− s)h1(t− u)ds du = (F1 ∗ g1 ∗ h1) (t), (A.2)

where the term inside the bracket is denoted by F1(s;α, λ, l). Now letting y = x− l + αt, we may

express F1(s;α, λ, l) as follows:

F1(s;α, λ, l) =

∫ ∞
l

e−αxf1(x, s)dx

=
l

s

√
2πe−λs−αl+

α2s
2

∫ ∞
αs

1√
2πs

(y − αs) e−
y2

2s dy

= le−λs−αl
{

1√
t
−
√

2παe
α2s
2 Φ

(
−α
√
s
)}

,

which is of the form given in Proposition 3.2. Similarly, by changing the order of integration, we

get an expression for the second integral of (A.1) as∫ t

0

g1(t− s)
{∫ l

−∞
e−αxk1(x, s)dx

}
ds = (K1 ∗ g1) (t), (A.3)

where the term inside the bracket is denoted by K1(s;α, λ, l). Letting y = (x− 2l+αt)/
√
s, we can

simplify K1(s;α, λ, l) as

K1(s;α, λ, l) =

∫ l

−∞
e−αxk1(x, s)dx

=
2π

s
e
α2s
2
−2αl

∫ (αs−l)√
s

−∞

(αs−
√
sy)√

2π
e−

y2

2 dy

=
√

2πe−αl

e−
l2

2s

√
s

+
√

2παe−αle
α2s
2 Φ

(
αs− l√

s

) .

The last term of (A.1), denoted by J1(t;α, λ, l), is calculated as

J1(t;α, λ, l) = e
α2t
2

{
Φ

(
αt+ l√

t

)
− e−2αlΦ

(
αt− l√

t

)}
. (A.4)

Combining the equations of (A.1)–(A.4) establishes the proof of Proposition 3.2.
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