• Title/Summary/Keyword: Joint Stiffness Control

Search Result 114, Processing Time 0.029 seconds

Semi-Singularity in Stiffness Generation of an Anthropomorphic Robot

  • Kim, Sungbok;Sungho Moon;Cho, Doo-San
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.113-116
    • /
    • 2000
  • This paper analyzes the singularity of an anthropomorphic robot associated with joint and operational stiffness generation from muscle stiffness. The singularity analysis is made simply based on the signs of the actual and the desired coupling joint stiffness. First, the relationships of the muscle stiffness and the actual joint stiffness, and the operational stiffness and the desired joint stiffness are examined. Second, according to the sign restriction on the actual coupling joint stiffness, the operational space is divided into the semi-singular(SS), the regular(R), and the semi-regular(SR) regions. Third, from the sign comparison of tile actual and the desired coupling joint stiffness, the sufficient condition for the semi-singularity in operational stiffness generation is derived. The limitation on the allowable operational stiffness when a task point belongs to SS, R, and SR regions is also discussed. Simulation results are given.

  • PDF

Development of Adaptive RCC Mechanism Using Double-Actuator Units (여자유도 액츄에이터를 이용한 능동RCC 장치의 개발)

  • Lim, Hyok-Jin;Kim, Byeong-Sang;Kang, Byung-Duk;Song, Jae-Bok;Park, Shin-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.168-177
    • /
    • 2007
  • In a number of fields, robots are being used for two purposes: efficiency and safety. Most robots, however, have single-actuator mechanism for each joint, where the tasks are performed with high stiffness. High stiffness causes undesired problems to the environment and robots. This study proposes redundant actuator mechanism as an alternative idea to cope with these problems. In this paper, Double-Actuator Unit (DAU) is implemented at each joint for applications of multi-link manipulators. The DAU is composed of two motors: the positioning actuator and the stiffness modulator, which enables independent control of positioning and compliance. A three-link manipulator with DAUs enables adaptive control of RCC. By modulating the joint stiffness of the manipulator and controlling the position of RCC, we can significantly reduce contact force during assembly tasks and surgical procedures.

  • PDF

Predicting the Human Multi-Joint Stiffness by Utilizing EMG and ANN (인공신경망과 근전도를 이용한 인간의 관절 강성 예측)

  • Kang, Byung-Duk;Kim, Byung-Chan;Park, Shin-Suk;Kim, Hyun-Kyu
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Unlike robotic systems, humans excel at a variety of tasks by utilizing their intrinsic impedance, force sensation, and tactile contact clues. By examining human strategy in arm impedance control, we may be able to teach robotic manipulators human''s superior motor skills in contact tasks. This paper develops a novel method for estimating and predicting the human joint impedance using the electromyogram(EMG) signals and limb position measurements. The EMG signal is the summation of MUAPs (motor unit action potentials). Determination of the relationship between the EMG signals and joint stiffness is difficult, due to irregularities and uncertainties of the EMG signals. In this research, an artificial neural network(ANN) model was developed to model the relation between the EMG and joint stiffness. The proposed method estimates and predicts the multi joint stiffness without complex calculation and specialized apparatus. The feasibility of the developed model was confirmed by experiments and simulations.

  • PDF

Robot Calibration with Joint Stiffness Parameters for the Enhanced Positioning Accuracy (위치 정밀도 향상을 위한 관절강성 파라미터 포함 로봇 캘리브레이션)

  • Kang, Hee-Jun;Shin, Sung-Won;Ro, Young-Shick;Suh, Young-Soo;Lim, Hyun-Kyu;Kim, Dong-Hyeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.406-410
    • /
    • 2008
  • This paper presents a new robot calibration algorithm with joint stiffness parameters for the enhanced positioning accuracy of industrial robot manipulators. This work is towards on-going development of an industrial robot calibration software which is able to identify both the kinematic and non-kinematic robot parameters. In this paper, the conventional kinematic calibration and its important considerations are briefly described first. Then, a new robot calibration algorithm which simultaneously identifies both the kinematic and joint stiffness parameters is presented and explained through a computer simulation with a 2 DOF manipulator. Finally, the developed algorithm is implemented to Hyundai HX165 robot and its resulting improvement of the positioning accuracy is addressed.

Analysis of the Assist Characteristics for Torque of the Ankle Plantarflexion in Elderly Adults Wearing the Ankle-Foot Orthosis (족관절 보조기를 착용한 고령자의 족관절 족저굴곡 토크 보조특성 분석)

  • Kim, Kyung;Kang, Seung-Rok;Piao, Yong-Jun;Jeong, Gu-Young;Kwon, Tae-Kyu
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.48-54
    • /
    • 2010
  • Ankle-foot orthosis with a pneumatic rubber actuator, which is intended for the assistance and the enhancement of ankle muscular activities was developed. In this study, the effectiveness of the system was investigated during plantarflexion motion of ankle joint. To find a effectiveness of the system, the subjects performed maximal voluntary isokinetic plantarflexion contraction on a Biodex-dynamometer. Plantarfexion torque of the ankle joint is assisted by subject's soleus muscle that is generated when ankle joint do plantarflexion motion. We used the muscular stiffness signal of a soleus muscle for feedback control of ankle-foot orthosis as physiological signal. For measurement of this signal, we made the muscular stiffness force sensor. We compared a muscular stiffness force of a soleus muscle between with feedback control and without it and a maximal plantarflexion torque between not wearing a ankle-foot orthosis, without feedback control wearing it and with feedback control wearing it in each ten elderly adults. The experimental result showed that a muscular stiffness force of a soleus muscle with feedback control was reduced and plantarflexion torque of an ankle joint only wearing ankle-foot orthosis was reduced but a plantarflexion torque with feedback control was increased. The amount of a increasing with feedback control is more higher than the amount of a decreasing only wearing it. Therefore, we confirmed the effectiveness of the developed ankle-foot orthosis with feedback control.

Ground Beam-Joint Topology Optimization for Design and Assembly of Multi-Piece Frame Structures (그라운드 빔 조인트 기반 위상최적화법을 이용한 프레임 구조물의 조립 위치 및 강도 설정)

  • Jang, Gang-Won;Kim, Myeong-Jin;Kim, Yun-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.688-693
    • /
    • 2007
  • Most frame structures cannot be manufactured in a single-piece form. Ideally, when a structure is built up by assembling multi pieces, assembly at the joints should be rigidly performed enough to have almost full stiffness, which is difficult for practical reasons such as manufacturing cost and time. In this research, we aim to develop a manufacturability-oriented compliance-minimizing topology optimization using a ground beam model incorporating additional zero-length elastic joint elements. In the present formulation, design variables control the stiffness of zero-length elastic joints, not the stiffness of beams. Because joint stiffness values at the converged state can be utilized to select candidate assembly locations and their strengths, the technique is extremely useful to design multi-piece frame structures. An optimal layout is also extracted based on the stiffness values.

  • PDF

Optimal Redundant Actuation of Parallel Manipulators with High Operational Stiffness (고강성 병렬형 로봇의 최적 여유 구동)

  • Kim, Sung-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.181-189
    • /
    • 2000
  • This paper presents the optimal redundant actuation of parallel manipulators for complicated robotic applications such as cutting grinding drilling and digging that require a high degree of operational stiffness as well as the balance between force applicability and dexterity. First by taking into account the distribution(number and location) of active joints the statics and the operational stiffness of a redundant parallel manipulator are formulated and the effects of actuation redundancy are analyzed, Second for given task requirements including joint torque limit task force maximum allowable disturbance and maximum allowable deflection the task execution conditions of a redundant parallel manipulator are derived and the efficient testing formulas are provided. Third to achieve high operational stiffness while maintaining moderate dexterity the redundant actuation of a parallel manipulator is optimized which determines the optimal distribution of active joints and the optimal internal joint torque, Finally the simulation results for the optimal redundant actuation of a planar parallel manipulator are given.

  • PDF

Configuration Control of a Redundant Manipulator Optimizing Stiffness and Joint Torque

  • Jin, Jaehyun;Ahn, Sungho;Jung, Jaehoo;Yoon, Jisup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.104.5-104
    • /
    • 2002
  • In this paper, we focus on a configuration control method of a redundant manipulator. The configuration of a redundant manipulator has been determined by geometry constraints and additional conditions, such as obstacle avoidance and dexterity optimization. This paper also utilizes optimization, and the additional condition (or performance index) to be optimized is stiffness of the end-effector and joints' torque. Stiffness and torque may be a natural attribute to be controlled during working and those vary as manipulator configuration does. So the optimal configuration from the viewpoint of stiffness and joint torque is studied. If the servo control mechanism of the joints Is assumed to be a...

  • PDF

Design of a Variable-Stiffness Type Safety Joint for Service Robots (서비스 로봇용 가변강성 형 안전관절의 설계)

  • Jeong, Jae-Jin;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.128-134
    • /
    • 2009
  • This paper aims to design a variable-stiffness type economical safety joint for service robots. The safety joint was designed to have a passive shock absorbing mechanism for protecting human from a catastrophic collision under service condition of robots. A simple mechanism composed of two action disks for switching the load transfer, a spring and a screw for pre-load was proposed. In order to evaluate the performance of the safety joint a testing platform which can carry out the static and impact tests was also designed and fabricated. From the test results, the designed safety joint was proved to have a variable load-carrying capacity and about 42% impact absorption capacity with simple manipulation of the control screw.

Ground Beam Structure Based Joint Stiffness Controlling Method for Compliant Mechanisms (컴플라이언트 메커니즘 설계를 위한 바닥 보 구조 기반 조인트 강성 조절법)

  • Jang Gang-Won;Kim Yoon-Young;Kim Myung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1187-1193
    • /
    • 2006
  • Traditionally, the continuum-based topology optimization methods employing the SIMP technique have been used to design compliant mechanisms. Although they have been successful, the optimized mechanisms by the methods are usually difficult to manufacture because of their geometrical complexities. The objective of this study is to develop a topology optimization method that can produce easy-to-fabricate mechanism structure. The proposed method is a ground beam method where beam connectivity is controlled by the beam joint stiffness. In this approach, beam joint stiffness determines the mechanism configuration. Because b the ground structure beams have uniform thicknesses varying only discretely, the resulting mechanism topologies become easily manufacturable.