Background: The treatment for acromioclavicular joint injuries (ACJI) ranges from a conservative approach to extensive surgical reconstruction, and the decision on how to manage these injuries depends on the grade of acromioclavicular (AC) joint separation, resources, and skill availability. After a thorough review of the literature, the researchers adopted a simple cost-effective technique of AC joint reconstruction for acute ACJI requiring surgery. Methods: This was a prospective single-center study conducted between April 2017 and April 2018. For patients with acute ACJI more than Rockwood grade 3, the researchers performed open coracoclavicular ligament reconstruction using synthetic sutures along with an Endobutton and a figure of 8 button plate. This was followed by AC ligament repair augmenting it with temporary percutaneous AC K-wires. Clinical outcomes were evaluated using the Constant Murley shoulder score. Results: Seventeen patients underwent surgery. The immediate postoperative radiograph showed an anatomical reduction of the AC joint dislocation in all patients. During follow-up, one patient developed subluxation but was asymptomatic. The mean follow-up period was 30 months (range, 24-35 months). The mean Constant score at 24 months was 95. No AC joint degeneration was noted in follow-up X-rays. The follow-up X-rays showed significant infra-clavicular calcification in 11 of the 17 patients, which was an evidence of a healed coracoclavicular ligament post-surgery. Conclusions: This study presents a simple cost-effective technique with a short learning curve for anatomic reconstruction of acute ACJI. The preliminary results have been very encouraging.
최근 스크린 클라이밍용 콘텐츠로 클라이밍 학습 프로그램과 스크린 클라이밍 게임이 등장하였으며, 특히 스크린 클라이밍 게임에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 스크린 클라이밍 콘텐츠 구현의 핵심 기술인 자세 인식 성능의 개선을 위하여 등반자의 신체영역을 기반으로 하는 스켈레톤 보정 방법을 제안한다. 스켈레톤 보정 과정은 비정상적인 스켈레톤 정보를 걸러내는 스켈레톤 프레임 안정화와 신체 영역을 관절부위별로 나누어 각 관절부위의 중점을 보정위치로 하는 신체영역 기반 스켈레톤 수정 과정으로 이루어진다. 이렇게 보정한 스켈레톤 정보는 클라이밍 콘텐츠에서 등반자의 자세가 이상적인 자세와 얼마나 유사한지 판단하는 데 사용될 수 있다.
In this paper we described an approach to automation of visual inspection of solder joint defects of SMC(Surface Mounted Components) on PCBs(Printed Circuit Board) by using neural network and fuzzy rule-based classification method. Inherently the surface of the solder joints is curved tiny and specular reflective it induces difficulty of taking good image of the solder joints. And the shape of the solder joints tends to greatly vary with the soldering condition and the shapes are not identical to each other even though the solder joints belong to a set of the same soldering quality. This problem makes it difficult to classify the solder joints according to their qualities. Neural network and fuzzy rule-based classification method is proposed to effi-ciently make human-like classification criteria of the solder joint shapes. The performance of the proposed approach is tested on numerous samples of commercial computer PCB boards and compared with the results of the human inspector performance and the conventional Kohonen network.
최근에 심층신경망(DNN)을 활용하여 채널 추정, 채널 양자화, 피드백, 프리코딩 과정을 통합하여 모델링하는 연구가 진행되었다. 해당연구는 기존에 이론적으로 어렵던 통합 최적화를 deep learning (DL)을 기반으로 수행하여 기존의 실제 codebook을 활용하는 프리코딩기법에 비해 높은 잠재력이 있음을 보였다. 하지만 기존의 기법은 랜덤하게 정해진 소수의 사용자만을 대상으로하며, 기존의 기법과 다르게 스케줄링이 포함된 환경에는 적응이 어렵다. 따라서 본 연구에서는 심층신경망기반의 프리코딩기법이 활용가능한 스케줄링 방식을 연구하여 기존의 결과와 비교한다.
A new method to control a robot manipulator by neural networks is proposed. The controller is composed of both a PD controller and a neural network-based feedforward controller. MLP(multi-layer perceptron) neural network is used for the feedforward controller and trained by BP(back-propagation) learning rule. Error terms for BP learning rule are composed of the outputs of a PD controller and the acceleration errors of manipulator joints. We compare the proposed method with existing ones and contrast performances of them by simulation. Also, We discuss the real application of the proposed method in consideration of the learning time of the neural network and the time required for sensing the joint acceleration.
Recently many adaptive control schemes for the industrial robot manipulator have been developed. Especially, learning control utilizing the repetitive motion of robot and based on iterative signal synthesis attracts much interests. However, since most of these approaches excludes the boundness of the input torque supplied to the manipulator, its effectiveness may be limited and also the full dynamic capacity of the robot manipulator can not be utilized. To overcome the above-mentioned difficulties and meet the desired performance, we propose an approach which yields the effective learning control schemes in this paper. In this study, some stability conditions derived from applying the Lyapunov theory to the discrete linear time-varying dynamic system are established and also an optimization scheme considering the bounded input torque is introduced. These results are simulated on a digital computer using a three-joint revolute manipulator to show their effectiveness.
Takemori, Fumiaki;Tatsuchi, Yasuhisa;Okuyama, Yoshifumi;Kanabolat, Ahmet
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
/
pp.65-68
/
1995
This paper describes trajectory generation of a riobot arm by self-organizing neural networks. These neural networks are based on competitive learning without a teacher and this algorithm which is suitable for problems in which solutions as teaching signal cannot be defined-e.g. inverse dynamics analysis-is adopted to the trajectory generation problem of a robot arm. Utility of unsupervised learning algorithm is confirmed by applying the approximated solution of each joint calculated through learning to an actual robot arm in giving the experiment of tracking for reference trajectory.
Uncertain dynamic parameters and joint flexibility have been problem to control robot manipulator precisely. Hence, even if the controller tracks the desired trajectory well with the feedback of the motor encoders, it is hard to achieve the desired behavior at the end-effector. In this paper, robot trajectory is taught by a general heuristic iterative learning control (ILC) algorithm in order to reduce tracking error of the tool center point (TCP) and the results of tracking with 6 DOF industrial robot manipulator are presented. The performance is verified based on ISO 9283.
It is a great honour for me to speak to you today on the Korean's problems in learning English pronunciation. First of all I would like to thank Prof. H. B. Lee, President of the Phonetic Society of Korea for calling upon me to make a keynote speech at this International Conference on Phonetic Sciences. The year before last when the 1 st Joint Summit on English Phonetics was held at Aichi Gakuin University in Japan, the warm hospitality given to me and my colleagues by the English Phonetic Society of Japan was so great that I would like to take this opportunity to express my sincere gratitude to the members of the English Phonetic Society of Japan and especially to Prof. Masaki Tsuzuki, President of the Society. Korean learners of English have a lot of problems in learning English pronunciation. Some vowel problems seem to be shared by Japanese learners but other problems, especially in consonants, are peculiar to Koreans owing to the nature of phonological rules peculiar to the Korean language. Of course, there are other important problems like speech rhythm and intonation besides vowels and consonants. But they will not be included here because of limited time.
It is not yet possible to solve the optimal number of neurons in hidden layer at neural networks. However, it has been proposed and proved by experiments that there is a limit in increasing the number of neuron in hidden layer, because too much incrememt will cause instability,local minima and large error. This paper proposes a module neural controller with pattern recognition ability to solve the above trade-off problems and to obtain fast learning convergence speed. The proposed neural controller is composed of several module having Multi-layer Perrceptron(MLP). Each module have the less neurons in hidden layer, because it learns only input patterns having a similar learning directions. Experiments with six joint robot manipulator have shown the effectiveness and the feasibility of the proposed the parallel module neural controller with pattern recognition perceptron.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.