• 제목/요약/키워드: Joint Kinematics

검색결과 428건 처리시간 0.026초

평지를 걸어갈 때 하지운동과 작용하는 하중에 대한 생체역학적 해석 (A Biomechanical Analysis of Lower Extremity Kinematics and Kinetics During Level Walking)

  • 손권;최기영;정민근
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2101-2112
    • /
    • 1994
  • A two-dimensional biomechanical model was developed in order to calculated the lower extremity kinematics and kinetics during level walking. This model consists of three segments : the thigh, calf, and foot. Each segment was assumed to be a rigid body ; its motion to be planar in the sagittal plane. Five young males were involved in the gait experiment and their anthropometric data were measured for the calculation of segmental masses and moments of inertial. Six markers were used to obtain the kinematic data of the right lower extremity for at least three trials of walking at 1.0m/s, and simultaneously a Kistler force plate was used to obtain the foot-floor reaction data. Based on the experimental data acquired for the stance phase of the right foot, calculated vertical joint forces reached up to 0.91, 1.05, and 1.11 BW(body weight) at the hip, the knee, the ankle joints, respectively. The flexion-extension moments reached up to 69.7, 52.3, and 98.8 Nm in magnitude at the corresponding three joints. It was found that the calculated joint loadings of a subject were statistically the same for all his three trials, but not the same for all five subjects involved in the gait study.

공구 끝의 일정한 절삭속도를 위한 5축 NC 가공 데이터의 이송속도 산출 (Calculating the Feedrate of 5-Axis NC Machining Data for the Constant Cutting Speed at a CL-point)

  • 이철수;이제필
    • 한국CDE학회논문집
    • /
    • 제6권2호
    • /
    • pp.69-77
    • /
    • 2001
  • This paper describes a method of calculating the feedrate for the constant cutting speed at a CL-point in 5-axis machining. Unlike 3-axis machining, 5-axis machining has the flexibility of the tool motions due to two rotation axes. But the feedrate at joint space differs from the feedrate at a tool tip(the CL-point) of the 3D Euclidean space for the tool motions. The proposed algorithm adjusts the feedrate based on 5-axis NC data, the kinematics of a machine, and the tool length. The following calculations is processed for each NC block to generate the new feedrate; 1) calculating the moving distance at the CL-point, 2) calculating the moving time by the given feedrate, 3) calculating the feedrate of each axis, 4) getting the new feedrate. The proposed algorithm was applied to a 5-axis machine which had a tilting spindle and a rotary table. Totally, the result of the algorithm reduced the machining time and smoothed the cutting-load by the constant cutting speed at the CL-point.

  • PDF

분산 제어기 구조를 갖는 마스터 암의 기구학 설계 및 해석

  • 이장욱;김윤상;이수용;김문상
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.532-539
    • /
    • 2001
  • In robot teleoperation, much research has been carried out to control the slave robot from remote site. One of the essential devices for robot teleoperation is the masterarm, which is a path command generating device worn on human arm. In this paper, a new masterarm based on human kinematics is proposed. Its controller is based on the distributed controller architecture composed of two controller parts: a host controller and a set of satellite controllers. Each satellite controller measures the corresponding joint angle, while the host controller performs forward and inverse kinematics calculation. This distributed controller architecture can make the data updating faster, which allows to implement real-time implementation. The host controller and the satellited controllers are networked via three-wire daisy-chained SPI(Serial Peripheral Interface) protocol, so this architecture makes the electrical wiring very simple, and enhances maintenance. Analytical method for finding three additional unknown joint angles is derived using only three measured angles for each shoulder and wrist, which makes th hardware implementation very simple by minimizing the required number of satellite controllers. Finally, the simulation and experiment results are given to demonstrate the usefulness and performance of the proposed masterarm.

  • PDF

보행에서 외측 경사진 굽은 밑창이 발목 운동에 미치는 영향 분석 (The Effect of a Wedged Rocker Sole on Ankle Joints during Gait)

  • 권성혁;김충식;김희진;유태범;정민근
    • 대한인간공학회지
    • /
    • 제27권3호
    • /
    • pp.93-101
    • /
    • 2008
  • Wedged soles and rocker soles are widespread shoe designs used to prevent the disorders and reduce the pain of the lower extremity caused by arthritis or diabetic feet. In this study, the effect of a shoe with a laterally wedged sole and a rocker sole simultaneously was analyzed on the kinematics and kinetics of the ankle joint during normal walking. Eight male participants without a history of lower extremity disorders were recruited. Each participant performed twenty walking cycles for each of three walking conditions: bare foot, wearing normal shoes and wearing shoes with laterally wedged rocker soles. The differences between the three walking conditions were statistically investigated including spatio-temporal variables, angular displacements, joint moments and ground reaction forces. The results showed that the laterally wedged rocker sole decreased the sagittal variation of angular displacements as well as the frontal/sagittal average moment on the ankle joints compared to the flat sole. In addition, the rate of angular displacements and loading decreased during the heel contact phase.

Automated Phase Identification in Shingle Installation Operation Using Machine Learning

  • Dutta, Amrita;Breloff, Scott P.;Dai, Fei;Sinsel, Erik W.;Warren, Christopher M.;Wu, John Z.
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.728-735
    • /
    • 2022
  • Roofers get exposed to increased risk of knee musculoskeletal disorders (MSDs) at different phases of a sloped shingle installation task. As different phases are associated with different risk levels, this study explored the application of machine learning for automated classification of seven phases in a shingle installation task using knee kinematics and roof slope information. An optical motion capture system was used to collect knee kinematics data from nine subjects who mimicked shingle installation on a slope-adjustable wooden platform. Four features were used in building a phase classification model. They were three knee joint rotation angles (i.e., flexion, abduction-adduction, and internal-external rotation) of the subjects, and the roof slope at which they operated. Three ensemble machine learning algorithms (i.e., random forests, decision trees, and k-nearest neighbors) were used for training and prediction. The simulations indicate that the k-nearest neighbor classifier provided the best performance, with an overall accuracy of 92.62%, demonstrating the considerable potential of machine learning methods in detecting shingle installation phases from workers knee joint rotation and roof slope information. This knowledge, with further investigation, may facilitate knee MSD risk identification among roofers and intervention development.

  • PDF

팽창성 암석절리의 개별요소 모델링에 관한 연구 (A Study on Distinct Element Modelling of Dilatant Rock Joints)

  • 장석부;문현구
    • 터널과지하공간
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

다양한 지형에서의 적응적인 걷기 동작 생성 (Generation of Adaptive Walking Motion for Uneven Terrain)

  • 송미영;조형제
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권11호
    • /
    • pp.1092-1101
    • /
    • 2003
  • 대부분의 3차원 캐릭터 애니메이션에서는 모션 캡쳐 장비를 통해서 포착된 동작 데이타를 이용하여 다양한 지형상에서 캐릭터가 걷는 동작을 표현한다. 이러한 동작 포착 데이타는 실제 사람과 같이 움직이는 동작들을 자연스럽게 표현할 수 있으나, 만약 다양한 지형에 대한 움직이는 동작이 표현할 경우, 지형의 유형에 따라 모든 동작을 캡쳐하여야 하고, 얻어진 동작 데이타를 다른 유형의 캐릭터에 적용할 경우 동작 데이타를 다시 얻거나 기존 동작 데이타를 재편집해야 하는 어려움이 있다. 따라서 본 연구에서는 적은 매개변수들을 사용하여 평지면, 경사면, 계단면 그리고 굴곡면 등 다양한 지형에서의 적응적인 걷는 동작을 생성하기 위한 방법과 골반과 이동하는 다리의 움직임 제적을 산출하는 방법을 제안한다. 이 방법에서는 캐릭터의 신장이나 걷는 속도, 걸음폭 등의 매개변수들을 조절하여 다양한 걸음걸이를 생성할 수 있으며 역운동학(Inverse Kinematics) 개념을 적용하여 관절들의 위치나 각도를 산출하고 관절의 이동 궤적을 계산하기 위해 큐빅 스플라인 곡선을 활용한다.

운동학에 기초한 로봇 손가락의 관절구조 평가 및 설계 (Evaluation and Design for Joint Configurations Based on Kinematic Analysis)

  • 황창순
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.176-187
    • /
    • 2005
  • This paper presents an evaluation of joint configurations of a robotic finger based on kinematic analysis. The evaluation is based on an assumption that the current control methods for the fingers require that the contact state specified by the motion planner be maintained during manipulation. Various finger-joint configurations have been evaluated for different contact motions. In the kinematic analysis, the surface of the manipulated object was represented by B-spline surface and the surface of the finger was represented by cylinders and a half ellipsoid. Three types of contact motion, namely, 1) pure rolling, 2) twist-roiling, and 3) slide-twist-rolling are assumed in this analysis. The finger-joint configuration best suited for manipulative motion is determined by the dimension of manipulation workspace. The evaluation has shown that the human-like fingers are suitable for maintaining twist-rolling and slide-twist-rolling but not for pure rolling. A finger with roll joint at its fingertip link, which is different from human fingers, proved to be better for pure rolling motion because it can accommodate sideway motions of the object. Several kinds of useful finger-joint configurations suited for manipulating objects by fingertip surface are proposed.

스탠스 유형에 따른 테니스 포핸드 스트로크의 하지관절각도와 회전각도 분석 (Analysis of Lower Limb Joint Angle and Rotation Angle of Tennis Forehand Stroke by Stance Pattern)

  • 강영택;이경순;서국웅
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.85-94
    • /
    • 2006
  • The purpose of this study was to analyze the kinematics variables of during forehand stroke by stance patterns. Eight high school tennis players were chosen for the study, who have never been injured for last six months, in Busan. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, open and semi-open stance. It was filmed by 6 video camera and used with 3-dimensional motion analyzer system. The following kinematic variables were analyzed in relation to angle of segment( shoulder, hip and knee joint). The conclusion were as follow: 1. The angle of hip joint represented at impact that horizontal swing was not significant difference by stance patterns but vertical swing was increased in open stance than square and semi-open stance. 2. The angle of both knee was not significant difference between all stance types and swing patterns. 3. The angle of shoulder, hip and knee joint rotation showed that open stance was increased than square and semi-open stance in all swing types and event.

Work chain-based inverse kinematics of robot to imitate human motion with Kinect

  • Zhang, Ming;Chen, Jianxin;Wei, Xin;Zhang, Dezhou
    • ETRI Journal
    • /
    • 제40권4호
    • /
    • pp.511-521
    • /
    • 2018
  • The ability to realize human-motion imitation using robots is closely related to developments in the field of artificial intelligence. However, it is not easy to imitate human motions entirely owing to the physical differences between the human body and robots. In this paper, we propose a work chain-based inverse kinematics to enable a robot to imitate the human motion of upper limbs in real time. Two work chains are built on each arm to ensure that there is motion similarity, such as the end effector trajectory and the joint-angle configuration. In addition, a two-phase filter is used to remove the interference and noise, together with a self-collision avoidance scheme to maintain the stability of the robot during the imitation. Experimental results verify the effectiveness of our solution on the humanoid robot Nao-H25 in terms of accuracy and real-time performance.