• Title/Summary/Keyword: Joint Detection Algorithm

Search Result 82, Processing Time 0.02 seconds

Fast-convergence trilinear decomposition algorithm for angle and range estimation in FDA-MIMO radar

  • Wang, Cheng;Zheng, Wang;Li, Jianfeng;Gong, Pan;Li, Zheng
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.120-132
    • /
    • 2021
  • A frequency diverse array (FDA) multiple-input multiple-output (MIMO) radar employs a small frequency increment across transmit elements to produce an angle-range-dependent beampattern for target angle and range detection. The joint angle and range estimation problem is a trilinear model. The traditional trilinear alternating least square (TALS) algorithm involves high computational load due to excessive iterations. We propose a fast-convergence trilinear decomposition (FC-TD) algorithm to jointly estimate FDA-MIMO radar target angle and range. We first use a propagator method to obtain coarse angle and range estimates in the data domain. Next, the coarse estimates are used as initialized parameters instead of the traditional TALS algorithm random initialization to reduce iterations and accelerate convergence. Finally, fine angle and range estimates are derived and automatically paired. Compared to the traditional TALS algorithm, the proposed FC-TD algorithm has lower computational complexity with no estimation performance degradation. Moreover, Cramer-Rao bounds are presented and simulation results are provided to validate the proposed FC-TD algorithm effectiveness.

Iterative Group Detection and Decoding for Large MIMO Systems

  • Choi, Jun Won;Lee, Byungju;Shim, Byonghyo
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.609-621
    • /
    • 2015
  • Recently, a variety of reduced complexity soft-in soft-output detection algorithms have been introduced for iterative detection and decoding (IDD) systems. However, it is still challenging to implement soft-in soft-output detectors for MIMO systems due to heavy burden in computational complexity. In this paper, we propose a soft detection algorithm for MIMO systems which performs close to the full dimensional joint detection, yet offers significant complexity reduction over the existing detectors. The proposed algorithm, referred to as soft-input soft-output successive group (SSG) detector, detects a subset of symbols (called a symbol group) successively using a deliberately designed preprocessing to suppress the inter-group interference. In fact, the proposed preprocessor mitigates the effect of the interfering symbol groups successively using a priori information of the undetected groups and a posteriori information of the detected groups. Simulation results on realistic MIMO systems demonstrate that the proposed SSG detector achieves considerable complexity reduction over the conventional approaches with negligible performance loss.

An Efficient Adaptive Polarization-Space-Time Domain Radar Target Detection Algorithm (3차원 (편파, 공간, 시간) 영역에서의 효율적인 적응 레이다 신호검출 알고리즘)

  • Yang, Yeon-Sil;Lee, Sang-Ho;Yoon, Sang-Sik;Park, Hyung-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.138-150
    • /
    • 2002
  • This paper addresses the problem of combining adaptive polarization processing and space-time processing for further performance improvement of radar target detection in clutter and Jammer environments. Since the most straightforward cascade combinations have quite limited performance improvement potentials, we focus on the development of adaptive processing in the joint polarization-space-time domain. Unlike a direct extension of some existing space-time processing algorithms to the joint domain, the processing algorithm developed in this paper does not need a potentially costly polarization filter bank to cover the unknown target polarization parameter. The performance of the new algorithm is derived and evaluated in terms of the probability of detection and the probability of false alarm, and it is compared with other algorithms that do not utilize the polarization information or assume that the target polarization is known.

  • PDF

Joint Symbol Detection and Channel Estimation Methods for an OFDM System in Fading Channels (페이딩 채널환경에서 OFDM 시스템에 대한 심볼 검출 및 채널 추정 기법)

  • Cho, Jin-Woong;Kang, Cheol-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.9-18
    • /
    • 2001
  • In this paper, we present the joint symbol detection and channel estimation for an orthogonal frequency division multiplexing (OFDM) system in fading channels. The proposed methods are based on decision-directed channel estimation (DDCE) method and their symbol detection is achieved by using Viterbi algorithm. This Viterbi decision-directed channel estimation (VDDCE) method tracks time-varying channels and detects a maximum likelihood symbol sequence. Recursive Viterbi decision-directed channel estimation (RVDDCE) method based on VDDCE method is proposed to shorten the detecting depth. In this method, channel estimate and Viterbi processing are recursively performed every interval of training symbol. Also, average chann'el estimation (ACE) technique to reduce the effect of additive white Gaussian noise (AWGN) is applied VDDCE method and RVDDCE method. These proposed methods arc demonstrated by computer simulation.

  • PDF

Depth-first branch-and-bound-based decoder with low complexity (검출 복잡도를 감소 시키는 Depth-first branch and bound 알고리즘 기반 디코더)

  • Lee, Eun-Ju;Kabir, S.M.Humayun;Yoon, Gi-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2525-2532
    • /
    • 2009
  • In this paper, a fast sphere decoder is proposed for the joint detection of phase-shift keying (PSK) signals in uncoded Vertical Bell Laboratories Layered Space Time (V-BLAST) systems. The proposed decoder, PSD, consists of preprocessing stage and search stage. The search stage of PSD relies on the depth-first branch-and-bound (BB) algorithm with "best-first" orders stored in lookup tables. Simulation results show that the PSD is able to provide the system with the maximum likelihood (ML) performance at low complexity.

A Study Access to 3D Object Detection Applied to features and Cars

  • Schneiderman, Henry
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.103-110
    • /
    • 2008
  • In this thesis, we describe a statistical method for 3D object detection. In this method, we decompose the 3D geometry of each object into a small number of viewpoints. For each viewpoint, we construct a decision rule that determines if the object is present at that specific orientation. Each decision rule uses the statistics of both object appearance and "non-object" visual appearance. We represent each set of statistics using a product of histograms. Each histogram represents the joint statistics of a subset of wavelet coefficients and their position on the object. Our approach is to use many such histograms representing a wide variety of visual attributes. Using this method, we have developed the first algorithm that can reliably detect faces that vary from frontal view to full profile view and the first algorithm that can reliably detect cars over a wide range of viewpoints.

  • PDF

Damage state evaluation of experimental and simulated bolted joints using chaotic ultrasonic waves

  • Fasel, T.R.;Kennel, M.B.;Todd, M.D.;Clayton, E.H.;Park, G.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.329-344
    • /
    • 2009
  • Ultrasonic chaotic excitations combined with sensor prediction algorithms have shown the ability to identify incipient damage (loss of preload) in a bolted joint. In this study we examine a physical experiment on a single-bolt aluminum lap joint as well as a three-dimensional physics-based simulation designed to model the behavior of guided ultrasonic waves through a similarly configured joint. A multiple bolt frame structure is also experimentally examined. In the physical experiment each signal is imparted to the structure through a macro-fiber composite (MFC) patch on one side of the lap joint and sensed using an equivalent MFC patch on the opposite side of the joint. The model applies the waveform via direct nodal displacement and 'senses' the resulting displacement using an average of the nodal strain over an area equivalent to the MFC patch. A novel statistical classification feature is developed from information theory concepts of cross-prediction and interdependence. This damage detection algorithm is used to evaluate multiple damage levels and locations.

Study of Target Tracking Algorithm using iterative Joint Integrated Probabilistic Data Association in Low SNR Multi-Target Environments (낮은 SNR 다중 표적 환경에서의 iterative Joint Integrated Probabilistic Data Association을 이용한 표적추적 알고리즘 연구)

  • Kim, Hyung-June;Song, Taek-Lyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.204-212
    • /
    • 2020
  • For general target tracking works by receiving a set of measurements from sensor. However, if the SNR(Signal to Noise Ratio) is low due to small RCS(Radar Cross Section), caused by remote small targets, the target's information can be lost during signal processing. TBD(Track Before Detect) is an algorithm that performs target tracking without threshold for detection. That is, all sensor data is sent to the tracking system, which prevents the loss of the target's information by thresholding the signal intensity. On the other hand, using all sensor data inevitably leads to computational problems that can severely limit the application. In this paper, we propose an iterative Joint Integrated Probabilistic Data Association as a practical target tracking technique suitable for a low SNR multi-target environment with real time operation capability, and verify its performance through simulation studies.

Self-Collision Detection/Avoidance for a Rescue Robot by Modified Skeleton Algorithm (보완 골격 알고리듬을 이용한 구난로봇의 자체 충돌감지/회피)

  • Lee, Wonsuk;Hong, Seongil;Park, Gyuhyun;Kang, Younsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • This paper handles self-collision avoidance for a rescue robot with redundant manipulators. In order to detect all available self-collisions in advance, minimum distances between arbitrary robot parts should be monitored in real-time. For the minimum distance estimation, we suggest a modified method from a previous skeleton algorithm which has less computation burden and realize collision avoidance based on a potential function using the proposed algorithm. The resultant command by collision avoidance should not disturb a given primary task, so null-space of joint solution from a CLIK is utilized for collision avoidance by a gradient projection method.