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Abstract

In this thesis, we describe a statistical method for 3D
object detection. In this method, we decompose the 3D

geometry of each object into a small number of

viewpoints. For each viewpoint, we construct a
decision rule that determines if the object is present at
that specific orientation. Each decision rule uses the
statistics of both object appearance and “non-object”
visual appearance. We represent each set of statistics
using a product of histograms. Each histogram
represents the joint statistics of a subset of wavelet
coefficients and their position on the object. Our
approach is to use many such histograms representing
a wide variety of visual attributes. Using this method,
we have developed the first algorithm that can reliably
detect faces that vary from fromtal view to full profile
view and the first algorithm that can reliably detect
cars over a wide range of viewpoints.

1. Introduction

Object detection is a big part of our lives. We are
constantly looking for and detecting objects: people,
streets, buildings, hallways, tables, chairs, desks, sofas,
beds, automobiles. Yet it remains a mystery how we
perceive objects so accurately and with so little
apparent effort. Comprehensive explanations have
defied physiologists and psychologists for more than a
century.

Figure 1. Examples of computer detection of human
faces

Figure 2. Examples of computer detection of
automobiles

In this thesis, our goal is not to understand how
humans perceive, but to create computer methods for
automatic object detection. Automated object detection
could have many uses. The availability of large digital
image collections has grown dramatically in recent
years. Corbis estimates it currently has morc than 67
million images in its current collection[l]. The
Associated Press collects and archives an estimated
1,000 photographs a day[2]. The number of images on
the World Wide Web is at least in the hundreds of
millions. However, the usability of these collections is
limited by a lack of effective retrieval methods.
Currently, to find a specific image in such a collection,
we have to scarch using text-based captions and low-
level image features such as color and texturc.
Automatic object detection and recognition could be
used to extract more information from these images
and help automatically label and categorize them. By
making thesc databases easier to search, they will
become accessible to wider groups of users, such as
tclevision broadcasters, law enforcement agencies,
medical practitioners, graphic and multimedia designers,
book and magazine publishers, journalists, historians,
artists, and hobbyists. Automatic objcct detection could
also be useful in photography. As camera technology
changes from film to digital capture, cameras will
become part optics and part computer (giving true
meaning to the term “computer vision”). Such a camera
could automatically focus, color balance, and zoom on
a specified object of interest, say, a human face. Also,
specific object detectors, such as a face detectors and
car detectors, have specialized uses. Face detectors are
a necessary component in any system for automatic
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face identification. Car detectors could be used for
automatically monitoring traffic.

1.1. Challenges in Object Detection

Automatic object detection is a difficult undertaking.
In 30 years of research in computer vision, little
progress has been made. The main challenge is the
amount of variation in visual appearance. For example,
cars vary in size, shape, coloring, and in small details
such as the headlights, grill, and tires. An object’s
orientation and distance from the camera affects its
appearance. A more general difficulty is that visual
information is ambiguous. Geometric ambiguity exists
since the three dimensions of the world are projected
on to two in the image. Also, a pixel’s intensity
depends on many dispersed factors in the environment.
It depends on the light sources: their locations, their
color, their intensity. It depends on the surrounding
objects. Some objects may cast shadows on the object
or reflect additional light on to the object. Pixel
intensity also depends on the reflective properties of the
viewed surfaces. A smooth surface will reflect light
differently than a rough one.

Figure 3. Objects of the same class can vary
significantly in appearance

Figure 4. Variation due to the pose (the relationship
between the orientation
of the object and the position of the camera)

Figure 5. Variation due to lighting and shadowing

Object detection is also difficult because images
contain a large amount of data. There may be hundreds
or even thousands of input pixels, each of which may

carry important information. To use this information to
its fullest extent, we would have to build the detector as
an enormous table with an entry for every possible
input indicating its classification, object or non-object,
such as Table 1. Such a representation would account
for all the forms of variation we just mentioned.
Unfortunately, such a table is infeasible. entries would
be required for describing the classification of a 20x20
region. Computer power and memory limit us to using a
classification rule that is hundreds of orders of
magnitude smaller. However, there is hope that we can
get by with such a representation. The physical world
imposes constraints on the appearance of objects; that
is, of all the possible images that could conceivably
exist in the physical world, only a small subset actually
do. Moreover, people and animals are living examples
things that achieve successful perception within their
own computational limits.

2. View-Based Detectors

Our overall goal is to be able to detect the object over
a range of orientations, sizes, and positions in an image.
We use a 2D view-based approach to accommodate
variation in orientation and we use exhaustive search in
position and scale to accommodate variation in size and
position.

A view-based approach works as follows. For each
object, we build several detectors where each one is
specialized to specific orientation of the object and can
accommodate small amounts of variation around this
orientation. To be able to detect an object at any
orientation we apply all these detectors to the image
and merge their results such that they are spatially
consistent. In Figure 7 we show such a face detection
result using this approach. In this example, each
detector detects all the faces corresponding to its
orientation. The woman in front was initially detected
by both the frontal and left profile detectors, because
the orientation of her face is somewhat inbetween these
orientations. However, when the algorithm spatially
integrates these results and chooses the more confident
detection which in this case is the frontal detection.
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Figure 5.View-based detectors

It may seem counter-intuitive to use a 2D based model
such as this to represent a 3D object, but there is an
advantage to doing so. The problem with a 3D model is
that we do not have explicit knowledge of the 3D
geometry of the object. All our information is in the
form of 2D images. To maintain a 3D representation we
would have to rely on 3D recovery methods which are
errorprone. By maintaining 2D models we avoid
introducing such errors into our representation.

The question of how many and which viewpoints to use
is an open question. One possible answer is to select
viewpoints from aspect graphs if the object has well-
defined surfaces. However, our approach was to simply
determine the number of viewpoints through
experimentation. For face detection, we found that
three separate detectors was sufficient: left-profile,
frontal views, and right-profile. In practice, we built
only two detectors, right-profile and frontal, since we
can detect left-profiles by applying the right profile
detector to a mirror-reversed image. We show example
training images for these in Figure 8. For automobile
detection, we originally used

Figure 6. Example training images for frontal and
right profile face views

three detectors, left-side, front, and right-side, but
found it was necessary to use more. There are several
explanations for this. Automobile photographs tend to
be taken from a wider variety of vantages, from road

level to views from a higher vantage point. In
comparison, we usually photograph faces at eye level,
except in surveillance cameras. Also, the shape of an
automobile is rectilinear. Small changes in angle will
produce bigger changes in appearance than they do for
a sphere. Overall, we used 15 decision rules
corresponding to the following orientations: one fron-

tal viewpoint and 14 side viewpoints. Here again, we
only had to train 8 detectors (7 right side detectors and
one frontal detector), since 7 viewpoints arc mirror
reflections of each other. In Figure 9 we show example
training images for each of the viewpoint we trained on .
We do not detect back views of cars. Also for both
object we do not represent in-plane rotations. Both
faces and cars tend to appear as upright objects

Figure 7. Example training images for each car
viewpoint

In addition to detecting the object over variation in
orientation, we also have to detect it over variation in
size and position within the image. Our approach to
detecting the object under these variations is to use
exhaustive search. We train each view-based detector
to only find the object when it is normalized in size and
centered in a given rectangular image window. (We
design each such detector to accommodate small
variation about this size and alignment.) To then detect
the object at position in an image, we have to re-apply
each detector at all possible positions of the rectangular
window. Then to detect the object at any size, we have
to repeat this process over magnified and contracted
versions of the original image.

3. Functional Form of Detector: Statistical
Representation Using Histograms

In this chapter we derive the functional form of our
detector. We usc a statistical representation to model
variation in visual appearance. We model both the
statistics of appearance of the object and the statistics
of the rest of the world. The difficulty in modeling
these distributions is that we do not know their true
characteristics. We do not know if they are Gaussian,
Poisson, multimodal, etc. These characteristics are
unknown since it is not tractable to analyze the joint
statistics of large numbers of pixels. Therefore, we
sought statistical models that avoid making strong
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assumptions about distributional structure while still
retaining good properties for estimation and retrieval.
As we will explain, the best compromise we found was
histograms.

Histograms, however, have one fundamental
limitation. A histogram can only use a discrete number
of values to describe appearance. More importantly,
because of limited computer memory and finite training
data, a histogram can only use a relatively small
number of discrete values. To overcome this limitation
we will describe how we use multiple histograms where
each histogram represents the statistical behavior of a
different group of quantized wavelet coefficients. With
this representation, each histogram represents a
different attribute of appearance in terms of spatial
extent, frequency range, orientation. Our approach is to
use many such histograms to make up for the limited
scope and resolution of each individual one.

In this approach, by modeling groups of wavelet
coefficients, we capture the statistics of appearance
over limited spatial extents. However, we would also
like to capture the overall gcometric configuration of
the object. Therefore, as we will explain, in each
histogram, we represent the joint statistics of
appearance and position, where we measure position
with respect to a local coordinate frame affixed to the
object. This representation implicitly captures each
part’s relative position with respect to all the others.

4. Functional Form of Detector:
Re-derivation from an ldeal Form

We can also view the functional form of our detector
as representing our best attempt at approximating to an
ideal functional form within our computational
constraints. In this chapter, we re-derive our functional
form through a series of approximations to an ideal
functional form. By deriving our decision rule this way
we get a clear picture of the functional form’s
representational capacity and its deficiencies. In
particular, we have a complete record of all the
transformations and simplifications that limit its
representational power. Also, through this analysis, we
gain a better understanding of several issues that were
not apparent in the first derivation in Chapter 3. This
derivation reveals why it is useful to select non-object
samples by bootstrapping and why we should train the
detector to explicitly reduce the classification error on
the training set. Also, we see why we divide object
probability by non-object probability (in section 3.1) --
a consequence of Bayes’ decision rule. Similarly, we
see how multiplying the probabilities from different
attributes (Section 3.6) corresponds to an assumption of

statistical independence of the observations.

5. Training Detectors

So far we have only chosen the form of the decision
rule; that is, we have specified the number of
histograms, the size of each histogram and the variables
over which we compute each histogram. We have not
specified the actual values within each histogram,
Pk(patternk(x.,y), i(x), j(y) | object) and Pk(patternk(x,y),
i(x), j(y) | non-object) that are used in the decision rule.
We compute these statistical values from various sets of
images. This process of gathering statistics is usually
referred to as training. Specifically, we use a set of
images of the object to generate samples for training
Pk(patternk(x,y), i(x), j(v) | object) and we use images
that do not contain the object to train Pk(patternk(x,y),
i(x), j(y) | non-object). In this chapter, we begin with a
discussion of our training images for faces and cars in
Section 5.1. In Section 5.2 we discuss the training
images we use for the non-object class. Then in section
5.3, we describe a basic training algorithm in which we
estimate each histogram separately then in Section 5.4
we describe an alternative training procedure which
minimizes the classification error on the training set
using the AdaBoost algorithm.

6. Implementation of the Detectors

In this chapter we describe how we implement our
detectors. Our main concern is speed of execution. We
would like detection to be as fast as possible. Our
strategy is to re-use multi-resolution information
wherever possible and to use a coarse-to-fine search
strategy and various other heuristics to prune out
unpromising object candidates.

6.1. Exhaustive Search

As explained in Chapter 2, each detector is
specialized for a specific orientation, size, alignment,
and intensity of the object. However, an object can
occur at any position, size, orientation, and intensity in
the image. Our approach is to use an exhaustive search
along all these dimensions to find objects in the image.
First, to be able to detect the object at any position in
the image, we have to re-apply all the detectors at
regularly spaced intervals in the image. At each of these
sampling sites we evaluate the candidate at five
different intensity corrections and select the one that
gives the best response. Then, to detect the object at
any size, we have to repeat this process for magnified
and contracted versions of the original image. We
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search at scales of magnification that decrcase by a
multiplicative factor of 2V4 =1.189

As we explain below, we chose an integer root of 2
so we could reuse information at each octave in this
scarch through scale. We then combine the results of
running  all these detectors. If there are multiple
detections at the same or adjacent locations and/or
scales, the algorithm chooses the strongest detection.

Since it will be very time-consuming to evaluate the
image in such an exhaustive fashion, we experimented
with several methods for decreasing computation time,
as we will describe later in this chapter.

7. Face Detection Performance

In this chapter we describe our results in face
detection in Section 7.1, provide analysis of how the
different parts of the face influence detection in Section
7.2, and assess statistical dependency across the extent
of the face in Section 7.3.

7.1. Results in Face Detection

The distinguishing characteristic of our face detector
is that it works for both frontal and out of- plane
rotational views. To date, several researchers [14] have
had success developing algorithms that work for frontal
views of faces, but none, to our knowledge, have had
success with profile (side) views except (below we will
compare our performance with).

We believe there are scveral reasons why profile view
faces arc more difficult to detect than frontal views.
First, the salient features on the face (eyes, nose, and
mouth) are not as prominent when viewed from the side
as they arc when they are viewed frontally. Also, for
frontal views these features are interior to the object,
whereas on a profile one of the strongest features is the
silhouette with the background. Since the background
can be almost any visual pattern, a profile detector must
accommodate much more variation in the silhouette’s
appearancc than a frontal detector does for interior
features.

We compared the performance of our detectors with
that reported by Rowley and Kanade on a test set of
profile views selected from a set of proprietary images
Kodak provided to Carnegie Mellon University. These
images consists of typical amateur photographs with
some of the typical problems of such images, including
poor lighting, contrast and focus. This test set consisted
of 17 images with 46 faces, of which 36 are in profile
view (between 3/4 view and full profile view):

Table 8: Face Detection results on Kodak

data set
Fowley & Kanade [87] Schnetderman and Kauade (using SdaBoost
. False Detection Darection False
Datection Deteetions 1 ialffaces) | (profiles oy Deteations
38.7% 1347 a3 Ri1.1% 15
41.2% [ 10 f 2% 7
136 LS 61.1% 1

We also collected a larger test set for benchmarking
face detection performance for out-of plane rotation.
This test set consists of 208 images with 441 faces that
vary in pose from full frontal to side view. Of these
images approximately 347 are profile view (between
3/4 view and full profile view). We gathered these
images from a variety of sites on the World Wide Web,
mainly news sites such as Yahoo and the New York
Times. Most of these images were taken by
professional photographers and of better quality than
the Kodak images in terms of composition, contrast,
and focus. Otherwise, they are unconstrained in terms
of content, background scenery, and lighting. Below in
Table 9 we show the performance at different values of
the threshold y controlling the sensitivity of the
detectors. By changing v we lincarly scale the detection
thresholds of both the profile and frontal detectors. We
also compare the performance of the detectors trained
with AdaBoost and without AdaBoost. Below in Figure
42 we show some typical results on this image sct
evaluated at y = 1.0 using detectors trained with
AdaBoost.

Table 9: Face Detection Results on Schneiderman
& Kanade Test Set

With AdaBoost

Withow AdaBoos

:
.
Detection False

. Dietections ' Detection False

! all faces) (profiles) Detections || {allfaces} | Deteotivns
4. 92.7% 028% 700 §2% 137
1.5 £3.5% §6.4% i 4% 27
23 TE2% 78.6% 12 6% 3

In terms of frontal face detection, the accuracy of our
detector comparcs favorably with those
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of other researchers. In these experiments, we also
noticed some differences in performance between
the detector described in this thesis and an improved
version of the detector we described in. Both of
these detectors use similar probabilistic structures
but differ mainly in that the detector in uses visual
attributes based on localized eigenvectors rather
than wavelet coefficients. The wavelet based
detector described in this thesis performs much
better for profile view faces. However, the
eigenvector based detector seems to be perform
slightly better on frontal faces. Below in Table 10
we compare our face detectors (wavelet-based and
eigenvector-based) with those results reported by
others on the combined frontal face test set
combining the test images from Sung and Poggio

and Rowley, Baluja, and Kanade [14].

8. Review of Other Statistical Detection

Methods

In this chapter in Section 9.1 we describe some of
the major theoretical differences between our
method of object detection and other methods of
object detection and in Sections 9.2 and 9.3 we
summarize several methods that have been applied
to face and car detection. In this discussion we
emphasize the particular modeling choices in each

of these methods.

8.1. Comparison of Our Approach to

Previous Detection / Recognition Methods

Below we summarize the main difference between
our approach and other previous approaches to

object detection / recognition

Figure 42. Face detection results

8.1.1. Local Appearance Versus Global
ppearance

Much work in object recognition treats the
appearance of the object in terms of full-sized rigid
templates including the work of {5],[6]. These
methods represent the appearance of the entire
object as one entity rather than decomposing the
object into smaller parts. There are several
disadvantages to this type of model. First, the global
methods that involve dimensionality reduction
[51,[61 will end up emphasizing the coarse attributes
of object appearance rather the distinctive nature of
the smaller parts such as the eyes, nose, and mouth
on a face. Second the matching of large template is
known to be sensitive to small differences in scale,
position, and oricntation. Finally the matching of
large regions can also be strongly influenced by
"irrelevant” pixels. On many objects, such as a car,
there will be large indistinctive arcas such as the
hood and windshield that are punctuated by
relatively smaller areas of distinctive detailing such
as the grill and headlights. In matching a large
region, the majority of the pixels will come from the
untextured parts and dominate selection of the
match (using any norm that weighs each pixel
equally such as L1 or L2).

9. Conclusion

In this thesis we have advanced the state of the art
in 3D object detection in the following ways. We
have developed the first algorithm that can reliably
detect faces that vary in viewpoint from frontal to
side view. Previously only frontal face detection had
been demonstrated reliably. We have also
demonstrated the first method for car detection that
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works robustly over a range of view points.

Several concepts contribute to the effectiveness of
these methods:

+ Joint statistics of appearance and position - Much
research in “parts-based” approaches to object
recognition overlook the importance of representing
the geometric arrangement of the parts. In our
experiments, we have found performance improves
drastically when we model the statistics of
appearance and position jointly.

* Powerful representation of appearance - In our
experiments we have observed that increased
representation power improves the accuracy of the
object detector. For example, we originally
developed a weaker representation based on a subset
of localized ecigenvectors.  Although  this
representation worked well for frontal face detection,
it was not fully satisfactory for profile detection. We
also noticed that when we reconstructed profile
images from this representation, many of the small
features that form of the silhouette of the face were
lost. We then redesigned our representation using
the wavelet-based representation described in this
thesis. With this new representation, our visual
representation of these features was better leading to
improved detection performance for profile views of
faces.

* Representation of the non-object - We also
observed that performance depended on how we
represented the non-object class. We noticed that
having some model was an improvement over
having no model, even if our model was based on
randomly sampled non-object images. Performance
improved further by using bootstrapping to select
non-object samples and tmproved still further by
using AdaBoost to weight them.

* Visual cues based on local relationships - We have
shown that by using a combination of visual cues
with selective localization in space, frequency and
orientation we can achieve accurate detection of
faces and cass.

* Coarse-to-fine heuristics - By using coarse to fine
heuristics, we have demonstrated that we can use a
large model with many visual cues in a
computationally feasible way. There are several
research areas we sec as a natural continuation of
this work:

» Representation - Representation remains the most
important issue in object detection. Perhaps, some

day researchers will develop specific statistic
models for visual appearance in the same way
Gaussian and Poisson models were developed to
model specific physical phenomena. Of course, to
do so, we would need a way to cope with the high
dimensional nature of images. One approach would
be to look at the pair-wise statistics among wavelet
coefficients as we have suggested in Chapters 7 and
8. Another approach would be to use our knowledge
of the physics of image formation. Good models for
the effects of illumination, reflection, geometry, and
material type on appearance exist. These models
have been used to synthesize images that look fairly

realistic. It may be possible to use such models to
characterize the statistics of appearance. In
particular, it may be easier to characterize the
statistical variation of the “input” to the image
formation process -- the illumination, the geometry
of the scene, and the surface characteristics -- than
to characterize the image variation directly. We
could then analyze how these imaging models
transform these stochastic inputs and thereby
indirectly arrive at a statistical characterization of
appearance.

+ Intensity/Lighting correction - In our work,
performance improved when we were able to correct
for differences in illumination. Most of the existing
methods for intensity correction use simple methods
such as histogram equalization or transforming the
intensities to have zcro mean and unit variance. We
believe that better performance can be achieved by
explicitly accounting for the appearance of the
object we are trying to enhance. One approach
would be to use a probabilistic model of the object’s
appearance to choose the correction. Let us assume
we have some lighting correction model:

image' =C( image ,0 ) (65)

where the paramcter, 0, controls the lighting
correction. Given that we have models for P(image |
object) and P(image | non-object), we could choose
the value of @ that gives the highest response and
therefore is corrected so it most looks like a member
of its class:

. P(Climage, 8)|object)
8 = argmnxg( J

P{C{image, 8)|non-object)
66)
We  have preliminary

conducted  some
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experimentation with this approach but have not had
much success.

+ Sample selection and weighting - In our
experiments, performance improved when we used
bootstrapping to select samples and boosting to
weight samples. Perhaps there is a principled way of
combining these two methods to achieve better
performance.

* Coding of appearance -We have used scalar
quantization to discretize each wavelet coefficient
separately. Methods of vector quantization whereby
a whole group of coefficients is quantized together
may ‘improve performance. We noticed such an
improvement in an earlier method based on
eigenvector responses.

There are also several research problems that we see
as a natural continuation of this work:

» Detection of other rigid objects - We would like to
test the generality of this algorithm by applying it to
other rigid objects such as boats, airplanes, animals,
pedestrians, etc.

* Detection of more challenging objects - Therc are
more challenging objects we would like to detect
such as buildings, trees, and text in video. These
objects have some structural regularity but less so
than faces or cars. We believe it is possible to detect
such objects accurately with current computing
power, but new representations will have to be
developed to do so.

* Other classifications - There are many other
classification problems that are probably solvable
such as discriminating between indoor and outdoor
scenes, urban and rural scenes, etc. It should also be
possible to classify people based on activity (talking,
smiling, walking) and their characteristics (age,
gender, hair color, facial hair, glasses, etc.). It may
even be possible to robustly identify people by
computer. Many research efforts are making
progress in this area.
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