• Title/Summary/Keyword: Joining strength

Search Result 1,107, Processing Time 0.031 seconds

Evaluation of joining strength of aluminum joining methods (알루미늄 결합법들의 결합 강도 평가)

  • 이명한;박영배;김헌영;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.152-155
    • /
    • 2003
  • The automotive industry is currently trying to develop light- weight vehicle for both improvement of fuel efficiency and reduction of environmental pollution. For the reduction of vehicle weight, the substitution of aluminum for steel has been increased. However, the change of material causes a significant problem with respect to the method of joining. In this paper, strength of several aluminum joining methods such as spot welding, metal insert gas(MIG) welding, adhesive bonding was evaluated by performing lap test.

  • PDF

An Experimental Study on the Strength Evaluation of A1-5052 Tensile-Shear Specimens Using a Mechanical Press Joining Method (기계적 프레스 접합법을 이용한 A1-5052 인장-전단 시험편의 강도 평가에 관한 실험적 연구)

  • 임두환;이병우;류현호;김호경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2003
  • A mechanical press joining was investigated in ender for joining A1-5052 sheets for automobile body weight reduction. Static tensile and fatigue tests were conducted using tensile-shear specimens for evaluation of fatigue strength of the joint. During Tox joining process for A1-5052 plates, using the current sheet thickness and punch diameter, the optimal applied punching force was found to be 32 kN under the current joining condition. For the static tensile-shear experiment results, the fracture mode is classified into interface fracture mode, in which the neck area fractured due to influence of neck thickness, and pull-out fracture mode due to influence of plastic deformation of the joining area. And, during fatigue tests for the A1-5052 tensile shear specimens, interface failure mode occurred in the region of low cycle. The fatigue endurance limit approached to 6 percents of the maximum applied load, considering fatigue lifetime of $2.5\times10^6$ cycles.

FSW Properties of Aluminum alloy 5000/6000 for Small Boat (소형선박용 5000계/6000계 알루미늄합금제의 마찰교반접합 특성 연구)

  • Cho, Je-Hyoung;Kim, Myung-Hyun;Choi, Jun-Woong
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • There are so many difficulties of melt bonding mainly applied for hull construction of a aluminum alloy small boat. For resolving this problem, Friction stir welding(FSW) in non-melting solid state welding Process generally is applied in the transport industry. This paper is studied the joining strength characteristics and macrostructure according to dissimilar aluminium 5000/6000 alloy joining for a small boat applied for this FSW technology. It is reported that difference of joining strength in accordance with the direction of rotation in case of friction stir welding between dissimilar metals(Al/Cu, Al/Fe) is also highly large. In this study, Test is carried out by making the specimen according to the direction of rotation of dissimilar aluminium alloy joining.

Effects of the Stand-off Distance on the Weld Strength in Magnetic Pulse Welding (전자기펄스용접에서 용접강도에 미치는 접합간격의 영향)

  • Kim, Sung-Wook;Chun, Chang-Keun;Kim, Sook-Hwan
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.48-53
    • /
    • 2008
  • Although Magnetic Pulse Welding(MPW) is not a recently developed technique, it has gained the attention of the automotive industry. MPW has become an accepted welding process because it enables the joining of similar, and dissimilar materials, with a very short cycle time, without the need for filler metal and gases. In this study, the effect of the stand-off distance on the weld strength has been investigated. The compressive strength of the MPW joints was evaluated using UTM. The interface of weld, IMC composition and morpology were studied by SEM and EDS. It was concluded that the stand-off distance and the voltage are the main parameters influencing the strength of weld. In case of too high stand-off distance, it influenced harmful effect because of the resistance of deformation.

Mechanical Behavior of Weldbond Joint of 1.2GPa Grade Ultra High Strength TRIP Steel for Car Body Applications (차체용 1.2GPa급 초고장력 TRIP강의 Weldbond 접합부의 기계적 거동)

  • Lee, Jong-Dae;Lee, So-Jeong;Bang, Jung-Hwan;Kim, Dong-Cheol;Kang, Mun-Jin;Kim, Mok-Soon;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.44-49
    • /
    • 2014
  • The effect of weldbond hybrid joining process on the mechanical behavior of single lap and L-tensile joints was investigated for the newly developed 1.2GPa grade ultra high strength TRIP(transformation induced plasticity) steel. In the case of single lap shear behavior, the weldbond joint of 1.2GPa TRIP steel showed lower maximum tensile load and elongation than that of the adhesive bonding only. It was considered to be due to the reduction of real adhesion area, which was caused by the degradation of adhesive near the spot weld, and the brittle fracture behavior of the spot weld joint. In the case of L-tensile behavior, however, the maximum tensile load of the weldbond joint of 1.2GPa TRIP steel was dramatically increased and the fracture mode was change to the base metal fracture which is desirable for the spot weld joint. These synergic effect of the weldbond hybrid joining process in 1.2GPa TRIP steel was considered to be due to the stress dissipation around the spot weld joint by the presence of adhesive which resulted in the change of crack propagation path.

Effect of Ti and Si Interlayer Materials on the Joining of SiC Ceramics

  • Jung, Yang-Il;Park, Jung-Hwan;Kim, Hyun-Gil;Park, Dong-Jun;Park, Jeong-Yong;Kim, Weon-Ju
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1009-1014
    • /
    • 2016
  • SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ~0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ~100 MPa. The joint interface consisted of $TiSi_2$, $Ti_3SiC_2$, and SiC phases formed by a diffusion reaction of Ti and Si.

The bonding mechanism and bond strength of cold pressure welding (엡셋팅에 의한 냉간 압접의 결합 기구와 결합강도)

  • 한인철;김재도
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.31-38
    • /
    • 1990
  • The bonding mechanism and bond strength were investigated for the cold pressure welding of Al to Al, Cu to Cu and Al to Cu by upsetting. A phenomenon of bonding betweenthe metallic components has been observed by a scanning electron microscope and metallurgical microscope. A modified equation for bond strength with respect to the reduction of height shows reasonably a good agreement with the experimental data. When the values of the hardening factor and threshold deformation for the given materials could be determined, the theoretical bond strength can be calculated.

  • PDF

Mechanical Properties of GMT-Sheet on Press joined Molding (프레스 접합성형 GMT-Sheet의 기계적 성질)

  • Kim, H.;Choi, Y.S.;Lee, C.H;Han, G.Y.;Lee, D.G
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.157-163
    • /
    • 2000
  • The application as the parts of an automobile, using the property of GMT-Sheet, is increasing. In order to exchange the parts of an automobile for GMT-Sheet, at first, the establishment and joining problem of exact joining strength must be determined. We have studied it using composites which is not same each other fiber oriented condition so as to determine joining strength and joining condition of GMT-Sheet. In this study, the result of experiment of forming condition concerned joining problem of GMT-Sheet is this ; joining efficiency of GMT-Sheet, increases as lap joint length L increases. Increase of compression ration cause decrease of joining efficiency after of GMT-Sheet, joining. In the viewpoint of recycling, randomly oriented composite of GMT-Sheet is desirable more than unidirectional oriented composite. We have better design the structure so as not occur to stress centralization on the joining part.

  • PDF

Research of Optimum Reflow Process Condition for 0402 Electric Parts (0402칩의 무연솔더링 최적공정 연구)

  • Bang, Jung-Hwan;Lee, Se-Hyung;Shin, Yue-Seon;Kim, Jeong-Han;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.85-89
    • /
    • 2009
  • Reflow process conditions were investigated for 0402 electric parts with Sn-3.0Ag-0.5Cu solders. Circle hole shape metal mask with 100 m thickness showed excellent printability. Self alignment abilities were 71% for 1005 chips, 52% for 0603 chips, and 3% for 0402 chips. Average joining strengos were 1990 gf for 1005 chips, 867 gf for 0603 chips, and 525 gf for 0402 chips. As mis-mounting angle increased, joining strength decreased. Considering self-alignment ability, mounting angle had to be under $5^{\circ}$ and contact area of the chips had to be over 40% for Pb-free soldering process for 0402 chips.

Mechanical Properties of GMT-Sheet on Press joined Molding (프레스 접합성형 GMT-Sheet의 기계적 성질)

  • Kim, Hyuk;Choi, Yu-Sung;Lee, Dong-Ki;Han, Gil-Young;Kim, Yi-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.553-553
    • /
    • 2000
  • The application as the parts of an automobile, using the property of GMT-Sheet, is increasing. In order to exchange the parts of an automobile for GMT-Sheet, at first, the establishment and joining problem of exact joining strength must be determined. We have studied it using composites which is not same each other fiber oriented condition so as to determine joining strength and joining condition of GMT-Sheet. h this study, the result of experiment of forming condition concerned joining problem of GMT-Sheet is this ; joining efficiency of of GMT-Sheet, increases as lap joint length L increases. Increase of compression ratio causes decrease of joining efficiency after of GMT-Sheet joining. In the viewpoint of recycling, randomly oriented composite of GMT-Sheet is desirable more than unidirectional oriented composite. We has better design the structure so as not to occur to stress centralizatien on the joining part.

  • PDF