Browse > Article
http://dx.doi.org/10.1016/j.net.2016.03.001

Effect of Ti and Si Interlayer Materials on the Joining of SiC Ceramics  

Jung, Yang-Il (LWR Fuel Technology Division, Korea Atomic Energy Research Institute)
Park, Jung-Hwan (LWR Fuel Technology Division, Korea Atomic Energy Research Institute)
Kim, Hyun-Gil (LWR Fuel Technology Division, Korea Atomic Energy Research Institute)
Park, Dong-Jun (LWR Fuel Technology Division, Korea Atomic Energy Research Institute)
Park, Jeong-Yong (LWR Fuel Technology Division, Korea Atomic Energy Research Institute)
Kim, Weon-Ju (LWR Fuel Technology Division, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.48, no.4, 2016 , pp. 1009-1014 More about this Journal
Abstract
SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ~0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ~100 MPa. The joint interface consisted of $TiSi_2$, $Ti_3SiC_2$, and SiC phases formed by a diffusion reaction of Ti and Si.
Keywords
Joining; Microstructures; Silicon Carbide; Torsional Stress;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C.H. Henager Jr., B.N. Nguyen, R.J. Kurtz, T.J. Roosendaal, B.A. Borlaug, M. Ferraris, A. Ventrella, Y. Katoh, Modeling and testing miniature torsion specimens for SiC joining development studies for fusion, J. Nucl. Mater. 466 (2015) 253-268.   DOI
2 L. Hallstadius, S. Johnson, E. Lahoda, Cladding for high performance fuel, Prog. Nucl. Energy 57 (2012) 71-76.   DOI
3 W.J. Kim, D. Kim, J.Y. Park, Fabrication and material issues for the application of SiC composites to LWR fuel cladding, Nucl. Eng. Technol. 45 (2013) 565-572.   DOI
4 D. Kim, H.G. Lee, J.Y. Park, W.J. Kim, Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications, J. Nucl. Mater. 458 (2015) 29-36.   DOI
5 H.G. Kim, J.H. Yang, W.J. Kim, Y.H. Koo, Development status of accident-tolerant fuel for light water reactors in Korea, Nucl. Eng. Technol. 48 (2016) 1-15.   DOI
6 J.M. Fernandez, A. Munoz, F.M. Varela-Feria, M. Singh, Interfacial and thermomechanical characterization of reaction formed joints in silicon carbide-based materials, J. Eur. Ceram. Soc. 20 (2000) 2641-2648.   DOI
7 P. Colombo, V. Sglavo, E. Pippel, J. Woltersdorf, Joining of reaction-bonded silicon carbide using a preceramic polymer, J. Mater. Sci. 33 (1998) 2405-2412.   DOI
8 S. Morozumi, M. Endo, M. Kikuchi, K. Hamajima, Bonding mechanism between silicon carbide and thin foils of reactive metals, J. Mater. Sci. 20 (1985) 3976-3982.   DOI
9 M.C. Halbig, M. Singh, H. Tsuda, Integration technologies for silicon carbide-based ceramics for micro-electro-mechanical systems-lean direct injector fuel injector applications, Int. J. Appl. Ceram. Technol. 9 (2012) 677-687.   DOI
10 B.V. Cockeram, The diffusion bonding of silicon carbide and boron carbide using refractory metals, USDOE Contract No. DE-AC11-98PN38206, Bettis Atomic Power Laboratory, West Mifflin, PA, 1999.
11 Y.I. Jung, S.H. Kim, H.G. Kim, J.Y. Park, W.J. Kim, Microstructures of diffusion bonded SiC ceramics using Ti and Mo interlayers, J. Nucl. Mater. 441 (2013) 510-513.   DOI
12 Y.I. Jung, H.G. Kim, I.H. Kim, J.Y. Park, W.J. Kim, Microstructures of laser bonded SiC ceramics with Zr interlayers, J. Nucl. Mater. 455 (2014) 586-590.   DOI
13 S. Grasso, P. Tatarko, S. Rizzo, H. Porwal, C. Hu, Y. Katoh, M. Salvo, M.J. Reece, M. Ferraris, Joining of b-SiC by spark plasma sintering, J. Eur. Ceram. Soc. 34 (2014) 1681-1686.   DOI
14 T. Hinoki, N. Eiza, S.J. Son, K. Shimoda, J.K. Lee, A. Kohyama, Development of joining and coating technique for SiC and SiC/SiC composites utilizing NITE processing, Ceram. Eng. Sci. Proc. 26 (2005) 399-405.
15 M. Herrmann, P. Meisel, W. Lippmann, A. Hurtado, Joining technology-a challenge for the use of SiC components in HTRs, Nucl. Eng. Des. (2016). Available from: http://dx.doi.org/10.1016/j.nucengdes.2015.12.022.   DOI
16 W. Lippmann, J. Knorr, R. Wolf, R. Rasper, H. Exner, A.M. Reinecke, M. Nieher, R. Schreiber, Laser joining of silicon carbide-a new technology for ultra-high temperature resistant joints, Nucl. Eng. Des. 231 (2004) 151-161.   DOI
17 M. Ferraris, M. Salvo, V. Casalegno, S. Han, Y. Katoh, H.C. Jung, T. Hinoki, A. Kohyama, Joining of SiC-based materials for nuclear energy applications, J. Nucl. Mater. 417 (2011) 379-382.   DOI
18 C.H. Henager Jr., Y. Shin, Y. Blum, L.A. Giannuzzi, B.W. Kempshall, S.M. Schwarz, Coatings and joining for SiC and SiC-composites for nuclear energy systems, J. Nucl. Mater. 367-370 (2007) 1139-1143.   DOI
19 X. Zhou, Y.H. Han, X. Shen, S. Du, J. Lee, Q. Huang, Fast joining SiC ceramics with $Ti_3SiC_2$ tape film by electric field-assisted sintering technology, J. Nucl. Mater. 466 (2015) 322-327.   DOI
20 B. Riccardi, C.A. Nannetti, T. Petrisor, J. Woltersdorf, E. Pippel, S. Libera, L. Pilloni, Issues of low activation brazing of $SiC_f$/SiC composites by using alloys without free silicon, J. Nucl. Mater. 329-333 (2004) 562-566.   DOI
21 Y. Katoh, L.L. Snead, T. Cheng, C. Shih, W.D. Lewis, T. Koyanagi, T. Hinoki, C.H. Henager Jr., M. Ferraris, Radiation-tolerant joining technologies for silicon carbide ceramics, J. Nucl. Mater. 448 (2014) 497-511.   DOI
22 J. Li, D. Jiang, S. Tan, Microstructure and mechanical properties of in situ produced SiC/$TiSi_2$ nanocomposites, J. Eur. Ceram. Soc. 20 (2000) 227-233.   DOI
23 Y.I. Jung, D.J. Park, J.H. Park, J.Y. Park, H.G. Kim, Y.H. Koo, Effect of $TiSi_2$/$Ti_3SiC_2$ matrix phases in a reaction-bonded SiC on mechanical and high-temperature oxidation properties, J. Eur. Ceram. Soc. 36 (2016) 1343-1348.   DOI