• Title/Summary/Keyword: Join query

Search Result 116, Processing Time 0.024 seconds

Query Reorganization Scheme supporting Parallel Query Processing of Theta Join and Nested SQL on Distributed CUBRID (분산 CUBIRD 상에서 세타 조인 및 중첩 SQL 병렬 질의처리를 지원하는 질의 재구성 기법)

  • Yang, Hyeon-Sik;Kim, Hyeong-Jin;Chang, Jae-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.37-38
    • /
    • 2014
  • 최근 SNS의 발전으로 인해 데이터의 양이 급격히 증가하였으며, 이에 따라 빅데이터 처리를 위한 분산 DBMS 기반 질의 처리 연구가 활발히 진행되고 있다. 이를 위해 CUBRID는 CUBRID Shard 서비스를 통해 데이터베이스를 shard 단위로 수평 분할하여 각기 다른 물리 노드에 데이터를 분산 저장하도록 지원한다. 그러나 CUBRID Shard는 shard간 데이터가 독립적으로 관리되기 때문에 세타 조인 및 중첩 질의와 같이 다수 서버에서의 테이블 참조가 필요한 질의는 처리가 불가능하다. 따라서 본 논문에서는 분산 CUBRID 상에서 세타 조인 및 중첩 SQL를 지원하는 질의 재구성 기법을 제안한다.

  • PDF

Greedy Query Optimization Performance Analysis for Join Continuous Query over Data Streams (데이터 스트림 환경에서의 조인 연속 질의의 그리디 질의 최적화 성능 분석)

  • Park, Hong-Kyu;Lee, Won-Suk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.361-364
    • /
    • 2006
  • 최근에 제한된 데이터 셋보다 센서 데이터 처리, 웹 서버 로그나 전화 기록과 같은 다양한 트랜잭션 로그 분석 등과 관련된 데이터 스트림 처리에 더 많은 관심이 집중되고 있으며, 특히 데이터 스트림의 질의 처리에 대한 관심이 증가하고 있다. 본 논문에서는 질의 중에서 2 개 이상의 스트림을 조인하는 조인 연속 질의를 처리하는 방법과 성능에 대해서 연구한다. 각 조인의 비용을 스트림의 입력 속도와 조인 선택도를 이용한 조인 비용 모델로 정의하고 그리디 알고리즘을 이용하여 최적화하는 기법을 제안하고 실험을 통해 다양한 스트림 환경에서 최적화 알고리즘이 어떤 성능을 보이는 지를 알아본다.

  • PDF

GOMS: Large-scale ontology management system using graph databases

  • Lee, Chun-Hee;Kang, Dong-oh
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.780-793
    • /
    • 2022
  • Large-scale ontology management is one of the main issues when using ontology data practically. Although many approaches have been proposed in relational database management systems (RDBMSs) or object-oriented DBMSs (OODBMSs) to develop large-scale ontology management systems, they have several limitations because ontology data structures are intrinsically different from traditional data structures in RDBMSs or OODBMSs. In addition, users have difficulty using ontology data because many terminologies (ontology nodes) in large-scale ontology data match with a given string keyword. Therefore, in this study, we propose a (graph database-based ontology management system (GOMS) to efficiently manage large-scale ontology data. GOMS uses a graph DBMS and provides new query templates to help users find key concepts or instances. Furthermore, to run queries with multiple joins and path conditions efficiently, we propose GOMS encoding as a filtering tool and develop hash-based join processing algorithms in the graph DBMS. Finally, we experimentally show that GOMS can process various types of queries efficiently.

EP2 Labeling Scheme for XML Data (XML 데이타를 위한 EP2 레이블링 스킴)

  • 진주용;배진욱;이석호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.79-81
    • /
    • 2004
  • 범위 기반 레이블링 스킴(range-based labeling scheme)을 이용하면 임의의 두 노드에 대한 조상-자손 관계를 쉽게 판별할 수 있으므로, XPath나 XQuery 형태의 질의를 효율적으로 처리할 수 있다. 그러나 노드의 삽입이 일어나는 동적인 상황에서는 불가피하게 전체 또는 일부의 레이블을 다시 할당(re-labeling)할 가능성이 있다는 문제점이 있다. 본 논문에서는 Dietz 레이블링 스킴을 개선한 EP2(extended preorder & postorder) 레이블링 스킴을 제안한다. 제안하는 스킴은 동일한 저장 공간상에서 범위 기반 레이블링 스킴에 비해 동적인 갱신에 유리하며, 기존의 구조 조인 알고리즘(structural join algorithm)을 이용하여 효율적으로 구조 질의(structural query)를 처리할 수 있다.

  • PDF

Performance Evaluation for Self-Join Queries in Database (데이터베이스에서 셀프조인 쿼리를 위한 성능평가)

  • 이원조;이단영;권순덕;고재진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.295-297
    • /
    • 2001
  • 데이터베이스의 성능개선을 위해서 여러 가지 튜닝기법을 사용하고 있다. 그러나 DBMS의성능문제는 약 60%가 응용프로그램의 SQL문에서 발생한다. 따라서 본 연구에서는 여러 가지 상황 중 MS SQL Server 2000의 [SQL Query Analyzer]를 사용하여 동일 쿼리의 셀프조인과 외부조인의 실험을 통하여 수행성능을 평가하였다.

  • PDF

Multiple Pipelined Hash Joins using Synchronization of Page Execution Time (페이지 실행시간 동기화를 이용한 다중 파이프라인 해쉬 결합)

  • Lee, Kyu-Ock;Weon, Young-Sun;Hong, Man-Pyo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.7
    • /
    • pp.639-649
    • /
    • 2000
  • In the relational database systems, the join operation is one of the most time-consuming query operations. Many parallel join algorithms have been developed to reduce the execution time. Multiple hash join algorithm using allocation tree is one of most efficient ones. However, it may have some delay on the processing each node of allocation tree, which is occurred in tuple-probing phase by the difference between one page reading time of outer relation and the processing time of already read one. In this paper, to solve the performance degrading problem by the delay, we develop a join algorithm using the concept of 'synchronization of page execution time' for multiple hash joins. We reduce the processing time of each nodes in the allocation tree and improve the total system performance. In addition, we analyze the performance by building the analytical cost model and verify the validity of it by various performance comparison with previous method.

  • PDF

Cost Model for Parallel Spatial Joins using Fixed Grids (고정 그리드를 이용한 병렬 공간 조인을 위한 비용 모델)

  • Kim, Jin-Deog;Hong, Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.665-676
    • /
    • 2001
  • The most expensive spatial operation in patial database in a spatial join which computes a combined table of which tuple consists of two tuples of the two tables satisgying a spatial predicate. Although the execution time of sequential processing of a spatial join has been so far considerably improved the response time is not tolerable because of not meeting the requiremetns of interactive users. It is usually appropriate to use parallel processing to improve the performance of spatial join processing. in spatial database the fixed grids which consist of the regularly partitioned cells can be employed the previous works on the spatial joins have not studied the parallel processing of spatial joins using fixed grids. This paper has presented an analytical cost model that estimates the comparative performance of a parallel spatial join algorithm based on the fixed grids in terms of the number of MBR comparisons. disk accesses, and message passing, Several experiments on the synthetic and real datasets show that the proposed analytical model is very accurate. This most model is also expected to used for implementing a very important DBMS component, Called the query processing optimizer.

  • PDF

A Design and Implementation of Virtual Grid for Reducing Frequency of Continuous Query on LBSNS (LBSNS에서 연속 질의 빈도 감소를 위한 가상그리드 기법의 설계 및 구현)

  • Lee, Eun-Sik;Cho, Dae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.752-758
    • /
    • 2012
  • SNS(Social Networking Services) is oneline service that enable users to construct human network through their relation on web, such as following relation, friend relation, and etc. Recently, owing to the advent of digital devices (smart phone, tablet PC) which embedded GPS some applications which provide services with spatial relevance and social relevance have been released. Such an online service is called LBSNS. It is required to use spatial filtering so as to build the LBSNS system that enable users to subscribe information of interesting area. For spatial filtering, user and tweet attaches location information which divide into static property presenting fixed area and dynamic property presenting user's area changed along the moving user. In the case of using a location information including dynamic property, Continuous query occurred from the moving user causes the problem in server. In this paper, we propose spatial filtering algorithm using Virtual Grid for reducing frequency of query, and conclude that frequency of query on using Virtual Grid is 93% decreased than frequency of query on not using Virtual Grid.

Materialized View Selection Scheme for enhancing RDF Query Performance (RDF 질의 처리 성능 향상을 위한 실체 뷰 선택 기법)

  • Park, Jaeyeol;Yoon, Sangwon;Choi, Kitae;Lim, Jongtae;Lee, Byoungyup;Shin, Jaeryong;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.12
    • /
    • pp.24-34
    • /
    • 2015
  • With the development of the semantic web, a large amount of data being produced nowadays is in RDF format. RDF is represented by a triple. An RDF database consisting of triples requires the high cost of join query processing. Materialized view is known as a scheme to reduce the query processing cost by accessing materialized views without accessing the database. It is physically stored the results or the intermediate results of the query processing in a storage area. In this paper, we propose a materialized view selection scheme by using decision tree to solve such a problem. The decision tree considers the size and maintenance costs of the materialized view as well as the profit of query response times. It is shown through performance evaluation that the proposed scheme increases the number of materialized views in the limited storage space and decreases the update rates of the materialized views.

Performance Comparison of Column-Oriented and Row-Oriented Database Systems for Star Schema Join Processing (스타 스키마 조인 처리에 대한 세로-지향 데이터베이스 시스템과 가로-지향 데이터베이스 시스템의 성능 비교)

  • Oh, Byung-Jung;Ahn, Soo-Min;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.29-38
    • /
    • 2011
  • Unlike in traditional row-oriented database systems, a column-oriented database system stores data in column-oriented and not row-oriented order. Recently, research results revealed the effectiveness of column-oriented databases for applications such as data warehouse and decision support systems that access large volumes of data in a read only manner. In this paper, we investigate the join strategies for column-oriented databases and prove the effectiveness of column-oriented databases in data warehouse systems. For unbiased comparison, the two database systems are analyzed using the star schema benchmark and the performance analysis of a star schema join query is carried out. We experimented with well-known join algorithms and considered early materialization and late materialization join strategies for column-oriented databases. The performance results confirm that star schema join queries perform better in terms of disk I/O cost in column-oriented databases than in row-oriented databases. In addition, the late materialization strategy showed more performance gain than the early materialization strategy in column-oriented databases.