• Title/Summary/Keyword: Job-Shop Scheduling (JSP)

Search Result 6, Processing Time 0.016 seconds

Application of Adaptive Particle Swarm Optimization to Bi-level Job-Shop Scheduling Problem

  • Kasemset, Chompoonoot
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.43-51
    • /
    • 2014
  • This study presents an application of adaptive particle swarm optimization (APSO) to solving the bi-level job-shop scheduling problem (JSP). The test problem presented here is $10{\times}10$ JSP (ten jobs and ten machines) with tribottleneck machines formulated as a bi-level formulation. APSO is used to solve the test problem and the result is compared with the result solved by basic PSO. The results of the test problem show that the results from APSO are significantly different when compared with the result from basic PSO in terms of the upper level objective value and the iteration number in which the best solution is first identified, but there is no significant difference in the lower objective value. These results confirmed that the quality of solutions from APSO is better than the basic PSO. Moreover, APSO can be used directly on a new problem instance without the exercise to select parameters.

Survey of Evolutionary Algorithms in Advanced Planning and Scheduling

  • Gen, Mitsuo;Zhang, Wenqiang;Lin, Lin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.15-39
    • /
    • 2009
  • Advanced planning and scheduling (APS) refers to a manufacturing management process by which raw materials and production capacity are optimally allocated to meet demand. APS is especially well-suited to environments where simpler planning methods cannot adequately address complex trade-offs between competing priorities. However, most scheduling problems of APS in the real world face both inevitable constraints such as due date, capability, transportation cost, set up cost and available resources. In this survey paper, we address three crucial issues in APS, including basic scheduling model, job-shop scheduling (JSP), assembly line balancing (ALB) model, and integrated scheduling models for manufacturing and logistics. Several evolutionary algorithms which adapt to the problems are surveyed and proposed; some test instances based on the practical problems demonstrate the effectiveness and efficiency of evolutionary approaches.

An Efficient PSO Algorithm for Finding Pareto-Frontier in Multi-Objective Job Shop Scheduling Problems

  • Wisittipanich, Warisa;Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.151-160
    • /
    • 2013
  • In the past decades, several algorithms based on evolutionary approaches have been proposed for solving job shop scheduling problems (JSP), which is well-known as one of the most difficult combinatorial optimization problems. Most of them have concentrated on finding optimal solutions of a single objective, i.e., makespan, or total weighted tardiness. However, real-world scheduling problems generally involve multiple objectives which must be considered simultaneously. This paper proposes an efficient particle swarm optimization based approach to find a Pareto front for multi-objective JSP. The objective is to simultaneously minimize makespan and total tardiness of jobs. The proposed algorithm employs an Elite group to store the updated non-dominated solutions found by the whole swarm and utilizes those solutions as the guidance for particle movement. A single swarm with a mixture of four groups of particles with different movement strategies is adopted to search for Pareto solutions. The performance of the proposed method is evaluated on a set of benchmark problems and compared with the results from the existing algorithms. The experimental results demonstrate that the proposed algorithm is capable of providing a set of diverse and high-quality non-dominated solutions.

A Comparative Study of Precedence-Preserving Genetic Operators in Sequential Ordering Problems and Job Shop Scheduling Problems (서열 순서화 문제와 Job Shop 문제에 대한 선행관계유지 유전 연산자의 비교)

  • Lee, Hye-Ree;Lee, Keon-Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.563-570
    • /
    • 2004
  • Genetic algorithms have been successfully applied to various optimization problems belonging to NP-hard problems. The sequential ordering problems(SOP) and the job shop scheduling problems(JSP) are well-known NP-hard problems with strong influence on industrial applications. Both problems share some common properties in that they have some imposed precedence constraints. When genetic algorithms are applied to this kind of problems, it is desirable for genetic operators to be designed to produce chromosomes satisfying the imposed precedence constraints. Several genetic operators applicable to such problems have been proposed. We call such genetic operators precedence-preserving genetic operators. This paper presents three existing precedence-preserving genetic operators: Precedence -Preserving Crossover(PPX), Precedence-preserving Order-based Crossover (POX), and Maximum Partial Order! Arbitrary Insertion (MPO/AI). In addition, it proposes two new operators named Precedence-Preserving Edge Recombination (PPER) and Multiple Selection Precedence-preserving Order-based Crossover (MSPOX) applicable to such problems. It compares the performance of these genetic operators for SOP and JSP in the perspective of their solution quality and execution time.

Quasi Assignment Algorithms in Job Shops

  • Byeon Eui-Seok;Lee Jang-Yong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.704-708
    • /
    • 2002
  • Production scheduling has been one of the most critical issues in a manufacturing environment Job-shop scheduling problems(JSP) are well know from the standpoint of production planning and operations control in this research scheduling against due date is a measure of performance and the objective is minimizing total weighted tardiness This paper presents an idea of decomposition of the problem and shows robustmess of the schedule under various disturbances along with exact and approximation methods. The proposed method can indeed handle shop disturbances more effectively when compared with traditional and dynamic scheduling methods.

  • PDF

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.