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Advanced planning and scheduling (APS) refers to a manufacturing management process by which raw materials 
and production capacity are optimally allocated to meet demand. APS is especially well-suited to environments 
where simpler planning methods cannot adequately address complex trade-offs between competing priorities. 
However, most scheduling problems of APS in the real world face both inevitable constraints such as due date, 
capability, transportation cost, set up cost and available resources.
In this survey paper, we address three crucial issues in APS, including basic scheduling model, job-shop scheduling 
(JSP), assembly line balancing (ALB) model, and integrated scheduling models for manufacturing and logistics. 
Several evolutionary algorithms which adapt to the problems are surveyed and proposed; some test instances based 
on the practical problems demonstrate the effectiveness and efficiency of evolutionary approaches.
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1. Introduction

The global concepts of manufacturing systems through-
out modern history were in close connection with the 
then principles and findings of the science, philoso-
phy, and arts. It can be noticed that the manufacturing 
concepts reflected the principles, criteria, and values 
generally accepted by the society as the most impor-
tant. For example, in the eighteenth, nineteenth, and 
the first half of the twentieth century, the scientific 
facts mainly exposed the unchanged ability, determin-
ism, rationality, exactness, and causality. That period 
can be characterized as the era of predominance of 
production. In the second half of the twentieth century, 
the advanced information technology assured the for-
mal conditions for the expansion of various organiza-
tional forms. The second half of the twentieth century 
can thus be characterized as the era when organiza-
tional aspects were prevailing. 

Future manufacturing concepts will have to be ada-

pted to the needs of the modern society and partic-
ularly, to the ecosystem more than ever. Unfortunately, 
the term adaptability is still bereft today of an im-
portant component; the adaptability still has a partic-
ularly mechanistic-technological connotation, whereas 
the component considering the adaptability to the eco-
system is almost completely neglected.

For this reason, in the existing manufacturing sys-
tems for optimization of production of goods, partic-
ularly the technological parameters are considered 
which are measurable or which we want to measure, 
whereas the global interaction of the goods with the 
ecosystem is much less considered. Therefore, today it 
is possible to speak particularly of the local mecha-
nistic-technological optimum of the goods, whereas 
the global optimum, affected by several influencing 
parameters and mutual relations, is not reached in 
most cases. In present manufacturing systems, partic-
ularly the deterministic approaches are used for syn-
chronization of material, energy, and information flows. 
It means that the methods based on the exact mathe-
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matical findings and the rules of logic are used for 
modeling, optimization, and functioning of systems. 
However, production is a very dynamic process with 
many unexpected events and continuously emerging 
new requirements. Therefore, exact description of a 
system is often not possible by conventional methods. 
Mathematical models are often derived by making 
simplifying assumptions. As a consequence, the model 
of the system is not in accordance with functioning of 
the real system. Such models of the systems are fre-
quently not suitable and flexible enough to respond ef-
ficiently to fast changes in the environment.

The existing manufacturing concepts cannot suc-
cessfully respond to the abovementioned problems to 
which modern production and society as a whole will 
be exposed in the future more than ever. However, in 
many different areas of science and technology it has 
been possible recently to notice the shift towards the 
conceiving of integrated systems capable of learning 
and efficiently responding to increasing complexity, 
unpredictability, and changeability of the environment. 
During the learning process, the system behavior grad-
ually improves. Machine learning as area of artificial 
intelligence is increasingly gaining importance. Several 
successful integrated systems have been conceived by 
the methods of machine learning. Recently, some in-
teresting manufacturing concepts and approaches to 
problem solving based on learning, self-organization, 
and on the bottom-up organizational principle were al-
so proposed. The intelligence, order and consequent, 
efficiency of those systems develop step by step and 
emerge due to interactions of the basic components 
(entities) of the systems with the environment. How-
ever, more research will be required for the concepts 
to take roots in real environments to the full extent.

In an integrated manufacturing system (IMS), the 
functional areas involved in providing the finished 
products to customers are integrated in a single 
system. These areas vary from manufacture product to 
distribution and from product design to facility man-
agement as shown in <Figure 1>. To find the optimal 
solutions in those fields gives rise to complex combi-
natorial optimization problems; unfortunately, most of 
them fall into the class of NP-hard problems. Hence to 
find a satisfactory solution in an acceptable time span 
is crucial for the performance of IMS. Genetic algo-
rithms have turned out to be potent methods to solve 
such kinds of optimization problems. In an IMS the 
basic problems indicated in <Figure 1> are likely to 
use evolutionary techniques.

1. Design : Design problems generally have to be 
decided only once in IMS, and they form some 
kinds of fixed inputs for other subsequent prob-
lems, such as manufacturing and planning prob-
lems. Typically, design problems in an integrated 
manufacturing system include layout design, as-
sembly planning, group technology and so on.

2. Planning : Compared to scheduling problems, pl-
anning problems have a longer horizon. Hence the 
demand information needed to find the optimal 
solution for a planning problem comes from fore-
casting rather than arrived orders. Process plan-
ning, operation sequencing, production planning 
and assembly line balancing fall into the class of 
planning problems.

3. Manufacturing : In manufacturing, there are two 
kind of essential issues : scheduling and routing. 
Machining, assembly, material handling and other 
manufacturing functions are performed to the best 
efficiency. Such kinds of problems are generally 
triggered by a new order.

4. Distribution : The efficient distribution of prod-
ucts is very important in IMS, as transportation 
costs become a nonnegligible part of the purchase 
price of products in competitive markets. This ef-
ficiency is achieved through sophisticated logistic 
network design and efficient traffic routing.

Integrated Manufacturing System
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Figure 1. Basic problems in an integrated 
manufacturing system

Advanced planning and scheduling (APS) includes a 
range of capabilities from finite-capacity scheduling at 
the shop floor level through to constraint-based plan-
ning in IMS. APS is a new revolutionary step in enter-
prise and inter-enterprise planning. It is revolutionary, 
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due to the technology and because APS utilises plan-
ning and scheduling techniques that consider a wide 
range of constraints to produce an optimized plan 
(Eck, 2003) :

∙ Material availability
∙ Machine and labour capacity
∙ Customer service level requirements (due dates)
∙ Inventory safety stock levels 
∙ Cost
∙ Distribution requirements
∙ Sequencing for set-up efficiency

Basing on the above description, considering charac-
teristic of different structure of problems and diversity 
of solutions to problems, three topics, job-shop sched-
uling problem (JSP) model, assembly line balancing 
(ALB) model and integrated scheduling models for 
manufacturing and logistics, are selected in this study. 
JSP is a basic scheduling model in APS, which con-
cerns to determinate the operation sequences and to 
minimize the makespan. The ALB not only include the 
operation sequence between stations, but also need to 
consider that how to group the operations among sta-
tions so that the precedence relations are not violated 
and a given objective function is optimized. The ap-
proaches to ALB models are also suitable for other 
scheduling problem. The integrated scheduling models 
for manufacturing and logistics not only consider the 
process scheduling system with manufacturing con-
straints, but also concern the transportation scheduling 
problem between plants, customers and so on.

The rest of the survey paper is organized as follows : 
in Section 2, we introduce JSP model, and give con-
ventional heuristics, and genetic representations for 
JSP, that are useful for design evolutionary algorithms 
to APS. In Section 3, we give a survey of assembly 
line balancing model, and propose a hybrid genetic ap-
proach for assembly line balancing model. In Section 
4, we introduce an advanced APS model, integrated 
scheduling model for manufacturing and logistics. 
This paper give the conclusion follows in Section 5.

2. Job-Shop Scheduling Model

Following Blazewicz et al. (1994), scheduling prob-
lems can be broadly defined as “the problems of the 
allocation of resources over time to perform a set of 

tasks”. The scheduling literature is full of very diverse 
scheduling problems (Brucker, 1998, French, 1982). 
The JSP concerns determination of the operation se-
quences on the machines so that the makespan is 
minimized. It consists of several assumptions as fol-
lows (Cheng et al., 1996) :

A1 : Each machine processes only one job at a time.
A2 : Each job is processed on one machine at a time.
A3 : A job does not visit the same machine twice.
A4 : The processing time of each operation has been 

determined.
A5 : There are no precedence constraints among op-

erations of different jobs.
A6 : Operations cannot be interrupted.
A7 : Neither release times nor due dates are specified.

This problem has already been confirmed as one of 
the NP-hard problems. There are n jobs and m ma-
chines to be scheduled; furthermore each job is com-
posed of a set of operations and the operation order on 
machines is prespecified, and each operation is charac-
terized by the required machine and the fixed process-
ing time (Cheng et al., 1996, Jain and Meeran, 1998, 
Gen and Cheng, 2002, Gao et al., 2007, 2008).

Opinion in this field is mixed about who first pro-
posed JSP in its current form. Roy and Sussmann were 
the first to propose the disjunctive graph representa-
tion (Roy and Sussmann, 1964), and Balas was the 
first to apply an enumerative approach based on the 
disjunctive graph. Since then many researchers have 
tried various strategies for solving this problem (Balas, 
1969). Dispatching rules was adapted in Grabot’s 
work (Grabot and Geneste, 1994), and Yang also used 
neural networks combined with a heuristics approach 
to solve the problem (Yang and Wang, 2000); more-
over some researchers especially Gen and Cheng using 
hybrid GA also obtained good solutions (Gen and 
Cheng, 2002, Cheng et al., 1999).

Recently, many researchers tried to adapt different 
meta-heuristic approaches to obtain a near-optimal sol-
ution of JSP. Monch and Driessel considered distributed 
versions of a modified shifting bottleneck heuristic to 
solve complex job shops. Nowicki and Smutnicki pro-
vide a new approximate Tabu Search (TS) algorithm that 
is based on the big valley phenomenon, and uses some 
elements of so-called path relinking technique as well as 
new theoretical properties of neighborhoods (Nowicki 
and Smutnicki, 2005). Tavakkoli-Moghaddam et al. 
(2005) used neural network (NN) approach to generate 



18 Mitsuo Gen․Wenqiang Zhang․Lin Lin

initial feasible solutions and adapted a simulated anneal-
ing (SA) algorithm to improve the quality and perform-
ance of the solution.

To improve the efficiency for finding better sol-
utions in searching space, some special technical local 
searches have been adapted in JSP. Ida and Osawa 
(2005) reformed the traditional left shift to short the 
idle time, and formulated an algorithm called Eshift. 
Gonçalves et al. (2005) proposed another technique 
based on the critical path to confirm the search space, 
and swapped the operations in critical block, and this 
approach can also improve the efficiency of algorithm 
for finding active schedule.

2.1 Mathematical Formulation of JSP
Notation
Indices
i, l : index of job, i, l = 1, 2, …,  n
j, h : index of machine,  j, h = 1, 2, …,  m
k : index of operation, k = 1, 2, …,  m

Parameters
n : total number of jobs
m : total number of machines
tM : makespan
Mj : the j-th machine
Ji : the i-th job, i = 1, 2, …,  n
oikj : the k-th operation of job Ji operated on machine 

Mj

pik j : processing time of operation oik j

Decision Variables
tikj : completion time of operation oikj on machine Mj 

for each job Ji

The JSP we are treating is to minimize the make-
span, so the problem could be described as an n-job 
m-machine JSP by simple equations as follows :

min max{ } =M ikjikj
t t (1)

, 1,s.t.   ,       , , ,− + ≤ ∀i k h ikj ikjt p t i k h j (2)
       0,        , ,≥ ∀ikjt i k j (3)

The objective function at Eq. 1 is to minimize the 
makespan. The constraint at Eq. 2 is the operation 
precedence constraint, the k-1-th operation of job i 
should be processed before the k-th operation of the 
same job. 

2.2 Conventional Heuristics for JSP
Job-shop scheduling is one of the hardest combina-

torial optimization problems. Since job-shop schedul-
ing is a very important everyday practical problem, it 
is therefore natural to look for approximation methods 
that produce an acceptable schedule in useful time. 
The heuristic procedures for a job-shop problem can 
be roughly classified into two classes :

∙ One-pass heuristic
∙ Multi-pass heuristic

One-pass heuristic simply builds up a single com-
plete solution by fixing one operation in schedule at a 
time based on priority dispatching rules. There are 
many rules for choosing an operation from a specified 
subset to be scheduled next. This heuristic is fast, and 
usually finds solutions that are not too bad. In addi-
tion, one-pass heuristic may be used repeatedly to 
build more sophisticated multi-pass heuristic in order 
to obtain better schedules at some extra computational 
cost (Gen et al., 2008). <Table 1> consists of some of 
the priority rules commonly used in practice.

Rule Description

SPT
(Shortest Processing 
Time)

Select the operation with the 
shortest processing time

LPT
(Longest Processing 
Time)

Select an operation with longest 
processing time

LRT
(Longest Remaining 
Processing Time)

Select the operation belonging to 
the job with the longest remaining 
processing time

SRT
(Shortest Remaining 
Processing Time)

Select the operation belonging to 
the job with the shortest remaining 
processing time

LRM
(LRT excluding the 
operation under 
consideration)

Select the operation belonging to 
the job with the longest remaining 
processing time excluding the 
operation under consideration

Table 1. A list of job shop dispatch rules

While one-pass heuristics limit themselves to con-
structing a single solution, multipass heuristics (also 
called search heuristics) try to get much better sol-
utions by generating many of them, usually at the ex-
pense of a much higher computation time. Techniques 
like branch-and-bound method and dynamic program-
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ming can guarantee an optimal solution, but are not 
practical for large-scale problems.

Randomized heuristics are an early attempt to pro-
vide more accurate solutions (Baker, 1974). The idea 
of randomized dispatch is to start with a family of dis-
patching rules. At each selection of an operation to 
run, choose the dispatching rule randomly, repeated 
throughout an entire schedule generation. Repeat the 
entire process several times and choose the best result. 
Various researchers tried to improve on the random-
ization approach. One change is to have a learning 
process so that more successful dispatching rules will 
have higher chances of being selected in the future. 
Morton and Pentico proposed a guided random ap-
proach. The guided means that an excellent heuristic is 
needed first, to “explore”  the problem and provide 
good guidance as to where to search.

The shifting bottleneck heuristic from Adams et al. 
(1987) is probably the most powerful procedure known 
up to now among all heuristics for the job-shop sched-
uling problem. It sequences the machines one by one, 
successively, taking each time the machine identified 
as a bottleneck among the machines not yet sequenced. 
Every time after a new machine is sequenced, all pre-
viously established sequences are locally reoptimized. 
Both the bottleneck identification and the local re-
optimization procedures are based on repeatedly solv-
ing a certain one-machine scheduling problem that is a 
relaxation of the original problem. The method of 
solving the one-machine problems is not new, al-
though they have speeded up considerably the time re-
quired for generating these problems. Instead, the 
main contribution of their approach is the way to use 
this relaxation to decide upon the order in which the 
machines should be sequenced. This is based on the 
classic idea of giving priority to bottleneck machines.

2.3 Genetic Representations for JSP
Because of the existence of the precedence con-

straints of operations, JSP is not as easy as the travel-
ing salesmen problem (TSP) to find a nature repre-
sentation. There is no good representation with a sys-
tem of inequalities for the precedence constraints. 
Therefore, the penalty approach is not easily applied to 
handle such kind of constraints. Orvosh and Davis 
(1994) have shown that, for many combinatorial opti-
mization problems, it is relatively easy to repair an in-
feasible or illegal chromosome and the repair strategy 
did indeed surpass other strategies such as rejecting 

strategy or penalizing strategy. Most GA and JSP re-
searchers prefer to take repairing strategy to handle the 
infeasibility and illegality. A very important issue in 
building a genetic algorithm for a job-shop problem is 
to devise an appropriate representation of solutions to-
gether with problem-specific genetic operations in or-
der that all chromosomes generated in either initial 
phase or evolutionary process will produce feasible 
schedules. This is a crucial phase that conditions all 
the subsequent steps of genetic algorithms. During the 
last few years, the following six representations for 
job-shop scheduling problem have been proposed :

∙ Operation-based representation
∙ Job-based representation
∙ Preference list-based representation
∙ Priority rule-based representation
∙ Completion time-based representation
∙ Random key-based representation
∙ These representations can be classified into the 

following two basic encoding approaches :
∙ Direct approach
∙ Indirect approach

In the direct approach, a schedule (the solution of 
JSP) is encoded into a chromosome and genetic algo-
rithms are used to evolve those chromosomes to find a 
better schedule. The representations, such as oper-
ation-based representation, job-based representation, job 
pair relation-based representation, completion time-based 
representation, and random keys representation belong 
to this class. In the indirect approach, such as priority 
rule-based representation, a sequence of dispatching 
rules for job assignment, but not a schedule, is encoded 
into a chromosome and genetic algorithms are used to 
evolve those chromosomes to find out a better sequence 
of dispatching rules. A schedule then is constructed 
with the sequence of dispatching rules. Preference 
list-based representation, priority rule-based repre-
sentation, disjunctive graph-based representation, and 
machine-based representation belong to this class. The 
detail explanations are shown in Gen et al. (2008).

2.4 Experiments on Benchmark Problems
Fisher and Thompson proposed three well-known 

benchmarks for job-shop scheduling problems in 1963 
(Fisher and Thompson, 1963); since then, researchers 
in operations research have tested their algorithms on 
these problems. Most GA and JSP researchers used 
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Classification of ALB models 
based on problem structure

Single-model ALB
(smALB) 

Mixed-model ALB
(mALB)

Multi-model ALB
(muALB) 

According to ALB model type According to ALB problem structure 

Simple ALB
(sALB)

General ALB
(gALB) 

Figure 2. Classification of assembly line balancing 
models

these benchmarks to test the performance of their 
algorithms. <Table 2> summarizes the experimental 
results. It lists problem name, problem dimension 
(number of jobs × number of operations), the best 
known solution (BKS), the solution obtained by differ-
ent algorithms, where Dorndorf1 stands for the hybrid 
approach of GA with Giffler and Thompson heuristic 
and Dorndorf2 for the hybrid one of GA with bottle-
neck shifting heuristic proposed by Dorndorf and 
Pesch.

FT06
(6×6)
(time 
unit)

FT10
(10×10)

(time unit)

FT20
(20×5)

(time unit)

BKS 55 930 1165
Gonçalves et al. (2005) 55 930 1165
Aiex et al. (2003) 55 930 1165
Binato et al. (2002) 55 938 1169
Wang and Zheng, (2001) 55 930 1165
Gonçalves and Beirão, 
(1999) 55 936 1177

Nowicki and Smutnicki, 
(1996) 55 930 1165

Croce et al. (1995) 55 946 1178
Cheng et al. (1995) 55 948 1196
Dorndorf1 et al. (1995) 55 960 1249
Dorndorf2 et al. (1995) 55 938 1178
Gen et al. (1994) 55 962 1175
Fang et al. (1993) - 949 1189
Yamada et al. (1992) 55 930 1184
Paredis et al. (1992) - 1006 -
Nakano et al. (1991) 55 965 1215

Table 2. Fisher and Thompson’s benchmark 
problems

3. Assembly Line Balancing Model

An assembly line (AL) is a manufacturing process 
consisting of various tasks in which interchangeable 
parts are added to a product in a sequential manner at a 
station to produce a finished product. Assembly lines 
are the most commonly used method in a mass pro-
duction environment, because they allow the assembly 
of complex products by workers with limited training, 
by dedicated machines and/or by robots.

The installation of an assembly line is a long-term 
decision and usually requires large capital invest-
ments. Therefore, it is important that an AL is de-

signed and balanced so that it works as efficiently as 
possible. Most of the work related to the ALs concen-
trate on the ALB. The ALB model deals with the allo-
cation of the tasks among stations so that the prece-
dence relations are not violated and a given objective 
function is optimized.

Besides balancing a newly designed assembly line, 
an existing assembly line has to be re-balanced peri-
odically or after certain changes in the production pro-
cess or the production plan. Because of the long-term 
effect of balancing decisions, the objective functions 
have to be carefully chosen while considering the stra-
tegic goals of the enterprise.

3.1 Classification of ALB Models
Based on the model structure, ALB models can be 

classified into two groups (see <Figure 2>). While, the 
first group (Scholl, 1999), (Becker and Scholl, 2006) 
includes single-model assembly line balancing (smALB), 
multi-model assembly line balancing (muALB), and 
mixed-model assembly line balancing (mALB); the 
second group (Baybars, 1986) includes simple assem-
bly line balancing (sALB) and general assembly line 
balancing (gALB). The smALB model involves only 
one product. The muALB model involves more than 
one product produced in batches. The mALB refers to 
assembly lines which are capable of producing a varie-
ty of similar product models simultaneously and con-
tinuously (not in batches). Additionally, sALB, the 
simplest version of the ALB model and the special 
version of smALB model, involves production of only 
one product with features such as paced line with 
fixed cycle time, deterministic independent processing 
times, no assignment restrictions, serial layout, one 
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sided stations, equally equipped stations and fixed rate 
launching. The gALB model includes all of the models 
that are not sALB, such as balancing of mixed-model, 
parallel, u-shaped and two sided lines with stochastic 
dependent processing times; thereby more realistic 
ALB models can be formulated by gALB.

Additionally, several versions of ALB problems 
arise by varying the objective function (Scholl, 1999). 
Type-F is an objective independent problem which is 
to establish whether or not a feasible line balance 
exists. Type-1 and Type-2 have a dual relationship; the 
first one tries to minimize the number of stations for a 
given cycle time, and the second one tries to minimize 
the cycle time for a given number of stations. Type-E 
is the most general problem version, which tries to 
maximize the line efficiency by simultaneously mini-
mizing the cycle time and a number of stations. 
Finally, Type-3, 4 and 5 correspond to maximization 
of workload smoothness, maximization of work relat-
edness and multiple objectives with Type-3 and 
Type-4, respectively (Kim et al., 1996).

3.2 Research on ALB Models
Since the ALB model was first formulated by 

Helgeson et al. (1954), many solution approaches have 
been proposed. Several optimum seeking methods, 
such as linear programming (Salveson, 1955), integer 
programming (Bowman, 1960), dynamic program-
ming (Held et al., 1963) and branch-and-bound ap-
proaches (Jackson, 1956) have been employed to deal 
with ALB. However, none of these methods has pro-
ven to be of practical use for large problems due to 
their computational inefficiency. Since, ALB model 
falls into the NP-hard class of combinatorial opti-
mization problems (Karp, 1972), in recent years, to 
provide an alternative to traditional optimization tech-
niques, numerous research efforts have been directed 
towards the development of heuristics (Dar-El, 1973) 
and meta-heuristics. While heuristic methods generat-
ing one or more feasible solutions were mostly devel-
oped until mid 90s; meta-heuristics such as tabu search 
(Scholl, 1996), simulated annealing (Suresh, 1994), 
genetic algorithms (Falkenauer and Delchambre, 1992) 
and ant colony optimization (Bautista and Pereira, 
2002) have been the focus of researchers in the last 
decade. 

For more information, the reader can refer to several 
review studies, i.e. Baybars (1986) that surveys the ex-
act (optimal) methods, Talbot et al. (1986) that com-

pare and evaluate the heuristic methods developed, 
Ghosh and Gagnon (1989) that present a compre-
hensive review and analysis of the different methods 
for design, balancing and scheduling of assembly sys-
tems, Erel and Sarin (1998) that present a compre-
hensive review of the procedures for smALB, muALB 
and mALB models, Rekiek et al. (2002) that focus on 
optimization methods for the line balancing and re-
source planning steps of assembly line design, Scholl 
and Becker (2006) that present a review and analysis 
of exact and heuristic solution procedures for sALB, 
Becker and Scholl (2006) that present a survey on 
problems and methods for gALB with features such as 
cost/profit oriented objectives, equipment selection/ 
process alternatives, parallel stations/tasks, u-shaped 
line layout, assignment restrictions, stochastic task 
processing times and mixed model assembly lines, 
Rekiek and Delchambre (2006) that focus on solutions 
methods for solving sALB, and Ozmehmet Tasan and 
Tunali (2008) that present a comprehensive review of 
GAs approaches used for solving various ALB models. 

Among the meta-heuristics, the application of Ge-
netic Algorithms (GAs) received a considerable atten-
tion from the researchers, since it provides an alter-
native to traditional optimization techniques by using 
directed random searches to locate optimum solutions 
in complex landscapes and it is also proven to be ef-
fective in various combinatorial optimization problems. 
GAs are powerful and broadly applicable stochastic 
search and optimization techniques based on principles 
from evolutionary theory (Gen and Cheng, 2000). 

Falkenauer and Delchambre (1992) were the first to 
solve ALB with GAs. Following Falkenauer and 
Delchambre (1992), application of GAs for solving 
ALB model was studied by many researchers, e.g., 
(Kim et al., 1996), (Leu et al., 1994), (Noorul et al., 
2006). However, most of the researchers focused on 
the simplest version of the problem, with single ob-
jective and ignored the recent trends, i.e., mixed-mod-
el production, u-shaped lines, robotic lines and etc, in 
the complex assembly environments, where ALB 
models are multiobjective in nature (Ozmehmet Tasan 
and Tunali, 2008).

3.3 Mathematical Formulation of ALB 
Models

The basic version of the ALB model is the simple 
assembly line balancing (sALB) model. The simple as-
sembly line is a single-model assembly line that is ca-
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pable of producing only one type of product. The sim-
ple assembly line can be defined by the following as-
sumptions (Scholl, 1999, Baybars, 1986) :

A1 : The line is used to assemble one homogeneous 
product in mass quantities. 

A2 : The line is serial, paced line with fixed cycle 
time and there are no feeder or parallel sub-
assembly lines. 

A3 : The processing times of tasks are deterministic.
A4 : All stations are equally equipped with respect 

to machines and workers.
A5 : A task cannot be split among two or more 

stations.
A6 : There are no assignment restrictions besides the 

precedence constraints.
A7 : All stations can process any one of the tasks 

and all have the same associated costs.
A8 : The processing time of a task is independent of 

the station and furthermore, they are not se-
quence dependent.

Among the family of ALB models, the most well- 
known and well-studied is certainly the sALB model. 
Although it might be far too constrained to reflect the 
complexity of real-world line balancing, it never-
theless captures its main aspects and is rightfully re-
garded as the core model of ALB. In fact, vast vari-
eties of more general problems are direct sALB model 
extensions or at least require the solution of sALB in-
stances in some form. In any case, it is well suited to 
explain the basic principles of ALB and introduce its 
relevant terms. 

A simple AL capable of producing only one type of 
product consists of stations (i = 1, …, m) arranged 
along a conveyor belt or a similar mechanical material 
handling equipment. The workpieces (jobs) are con-
secutively launched down the line and are moved from 
station to station. At each station, certain tasks are re-
peatedly performed regarding the cycle time (max-
imum or average time available for each workcycle). 
The decision problem of optimally partitioning, i.e., 
balancing, the assembly work among the stations with 
respect to a given objective function is known as 
sALB problem.

Manufacturing a product on an assembly line re-
quires partitioning the total amount of work into a set 
of elementary operations named tasks j = {1, …, n}. 
Performing a task j takes certain task time tj and re-
quires certain equipment of machines and/or skills of 

workers. Due to technological and organizational con-
ditions precedence constraints between the tasks have 
to be observed. These elements can be summarized 
and visualized by a precedence network graph. It con-
tains a node for each task, node weights for the task 
processing times and arcs for the precedence con-
straints. 

<Table 3> presents the data set for an example 
sALB model, which contains 12 tasks ((Runarsson, 
1999)). Using this data set, the precedence graph in 
<Figure 3> is constructed. The precedence graph con-
tains 12 nodes for tasks, node weights for task proc-
essing times and arcs for orderings. For example, the 
processing time for task 6 is 5 time units. For the proc-
essing of task 6, tasks 3 and 5 (direct predecessors) 
and tasks 1, 2 and 4 (indirect predecessors) must be 
completed. Likewise, task 6 must be completed before 
tasks 7, 9 and 10 (direct successors), and tasks 8, 10, 
and 12 (indirect successors) start processing. 

Task j Suc(j) Task time tj

1 {2, 4} 5
2 {3} 3
3 {6} 4
4 {5} 3
5 {6} 6
6 {7, 9, 10} 5
7 {8} 2
8 {12} 6
9 {12} 1
10 {11} 4
11 {12} 4
12 {} 7

Table 3. Data set of the sALB model
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Figure 3. Precedence graph of the sALB model 

Any type of sALB model consists in finding a fea-
sible line balance, i.e., an assignment of each task to a 
station such that the precedence constraints are ful-
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1, 2     3, 4 5, 6 7, 9, 10, 11   8 12      

station 1 station 2 station 3 station 4 station 5 station 6

idle idle idle idle

station time: 
8 time units    7 time units 11 time units   11 time units  6 time units   7 time units

cycle time cT = 11 time units

filled. The set of tasks Si assigned to a station i (= 1, 
…, m) constitutes its station load, the cumulated task 
time 

( ) ∑
∈

=
iSj

ji tSt
(4)

is called station time. When a fixed common cycle 
time cT is given, a line balance is feasible only if the 
station time of neither station exceeds cT. In case of 
t(Si) < cT, the station i has an idle time of (cT-t(Si)) 
time units in each cycle. 

Using the precedence graph in <Figure 3>, a feasible 
line balance with cycle time 11 time units and 6 sta-
tions can be constructed by the station loads S1 = {1, 
2}, S2 = {3, 4}, S3 = {5, 6}, S4 = {7, 9, 10, 11}, S5 = 
{8}, S6 = {12} (see <Figure 4>). While no idle time 
occurs in stations 3 and 4, stations 1, 2, 5 and 6 show 
idle times of 3, 4, 5 and 4 time units, respectively.

Figure 4. A feasible line balance for a sALB model

In order to formulate the mathematical model, the 
following indices, parameters and decision variable 
are introduced :

Notations
Indices
i :  index of the station (i = 1, …, m)
j, k :  index of the task (j, k = 1, …, n)

Parameters
m :  number of stations actually employed 
M :  maximum number of stations available
n :  number of tasks 
cT :  cycle time of the assembly line
tj :  processing time of task j
Si :  the set of tasks assigned to station i
TS :  a task sequence 
Suc(j) :  the set of direct successors of task j
Pre(j) :  the set of direct predecessors of task j
ui :  utilization of the station i

( ){ } ( )i
imi

i St
St

u
≤≤

=
1
max

1
(5)

u :  average utilization of total stations

1

1 m

i
i

u u
m =

= ∑ (6)

Decision Variables
 if task j is assigned to station i
 otherwise 

The mathematical model for the sALB Type-1 can 
be stated as follows : 

Mathematical Model
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In this mathematical model, the first objective (Eq. 
7) of the model is to maximize the line efficiency. The 
second objective (Eq. 8) is to minimize the number of 
stations actually employed. The third objective (Eq. 9) 
of the model is to minimize the variation of workload. 
The constraints given in equations (10)～(13) are used 
to formulate the general feasibility of the problem. The 
constraint given in equation (10) states that each task 
must be assign to one and only one station. Inequity 
(11) represents the precedence constraints and it states 
that the direct predecessor of task j must be assign to a 
station, which is in front of or the same as the station 
that task j is assigned in. This constraint stresses that if 
a task is assigned to a station, then the predecessor of 
this task must be already assigned to a station. Inequi-
ty (12) denotes that the available time at each station 
should be less than or equal to the given cycle time. 
Constraint given in equation (13) represents the usual 
integrity restriction.

3.4 Genetic Representation for ALB Models
The primary issue in applying GA to problem is to 

convert the information of ALB model into a genetic 
representation form. Up to now, several genetic repre-
sentations, i.e., task-based, embryonic, workstation- 
based, grouping-based, and heuristic-based have been 
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Figure 5. Chromosome representation schemes 
used in ALB models

proposed, each having pros and cons concerning the 
type of applicable genetic operators.

The chromosome representation schemes are named 
in order to suit the characteristics of ALB model 
(Ozmehmet Tasan and Tunali, 2008). These repre-
sentation schemes can be classified as follows :

Task-based Encoding : The chromosomes are defined 
as feasible precedence sequences of tasks (Miltenburg, 
2002), (Sabuncuoglu et al., 2000). The length of the 
chromosome is defined by the number of tasks. For 
example, the task based representation of the solution 
is illustrated in <Figure 5(a)>. In order to calculate the 
fitness of a task based chromosome, additional oper-
ations, which assign the tasks to workstations accord-
ing to the task sequence in the chromosome, are 
needed. Task-based representation is the most appro-
priate representation for ALB Type-1 models, since 
Type-1 models consider the minimization of stations 
as an objective function.

Embryonic Encoding : Embryonic chromosome rep-
resentation that was proposed by Brudaru and Valmar 
(2004) is actually a special version of the task based 
chromosome. The only difference between the two is 
that the embryonic representation of a solution consid-
ers the subsets of solutions rather than the individual 
solutions. During the generations, the embryonic chro-
mosome evolves through a full length solution. There-
fore, the chromosome length varies throughout the 
generations. The length is initially defined by a ran-
dom number and then increases until it reaches the 
number of tasks. <Figure 5(b)> illustrates an example 
of embryonic representation

Workstation-based Encoding : The chromosome is 
defined as a vector containing the labels of the stations 
to which the tasks are assigned (Anderson and Ferris, 
1994), (Kim et al., 2000). The chromosome length is 
defined by the number of tasks. For example, the 
workstation based representation of the solution is il-
lustrated in <Figure 5(c)>, where task 4 is assigned to 
station 3. This kind of chromosome representation 
scheme is generally used for ALB Type-2 models.

Grouping-based Encoding : This type of representa-
tion was proposed by Falkenauer and Delchambre 
(1992) especially for grouping problems, i.e., ALB 
Type-1 models. The authors stated that the work-
station-based representation, which is object oriented, 

is not suitable for ALB Type-1 models. In group-
ing-based representation, the stations are represented 
by augmenting the workstation-based chromosome 
with a group part. The group part of the chromosome 
is written after a semicolon to list all of the work-
stations in the current solution (see <Figure 4(d)>). 
The length of the chromosome varies from solution to 
solution. As is seen in <Figure 5(d)>, the first part is 
the same as in workstation-based chromosome. The 
difference comes from the grouping part, which list all 
the stations, i.e., 1, 2, 3, 4, 5, and 6.

Heuristic-based (Indirect) Encoding : This type of 
representation scheme represents the solutions in an in-
direct manner. In Goncalves and De Almeida (2002), 
and Bautista et al. (2000), the authors first coded the 
priority values of the tasks (or a sequence of priority 
rules), then they applied these rules to the problem to 
generate the solutions. The chromosome length is de-
fined by the number of heuristics. For example, 
<Figure 5(e)> shows an example chromosome having 
seven different heuristics, which are used in the se-
quence of H1, H2, H5, H4, H7, H6 and H3 to assign the 
tasks to the workstations.

3.5 Robotic Assembly Line Balancing Model
In the past decades, robots have been extensively 

used in assembly lines as called robotic assembly lines 
(rALs). An assembly robot can work 24 hours a day 
without worries or fatigue. Goals for implementation 
of robotic assembly lines include high productivity, 
quality of product, manufacturing flexibility, safety, 
decreasing demand of skilled labor, and so on. Differ-
ent robot types may exist at the assembly facility. Each 
robot type may have different capabilities and efficien-
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cies for various elements of the assembly tasks. Usually, 
specific tooling is developed to perform the activities 
needed at each station. Such tooling is attached to the 
robot at the station. In order to avoid the time waste re-
quired for tool change, the design of the tooling can 
take place only after the line has been balanced. 
Hence, to allocate the best fitting robot for each station 
is critical for the performance of rALs. 

Unlike manual assembly lines, where actual process-
ing times for performing task vary considerably and 
optimal balance is rather of theoretical importance, the 
performance of rALs depends strictly on the quality of 
its balance. As extended from sALB, robotic assembly 
line balancing (rALB) is also NP-hard. 

Rubinovitz and Bukchin (1993) were the first to for-
mulate the rALB model as one of the allocating equal 
amounts of work to the stations on the line while as-
signing the most efficient robot type from the given set 
of available robots to each workstation. Their ob-
jective is to minimize the number of workstations for a 
given cycle time. Following, the authors (Rubinovitz 
and Bukchin, 1991) presented a branch and bound al-
gorithm for the problem. Bukchin and Tzur (Bukchin 
and Tzur, 2000) treat the problem with objective to 
minimize the total equipment cost, given a predet-
ermined cycle time, where they developed an exact 
branch and bound algorithm, meanwhile a branch-and- 
bound-based heuristic procedure is suggested for large 
problems. Tsai and Yao (1993) proposed a heuristic 
approach for the design of a flexible robotic assembly 
line which produces a family of products. Kim and 
Park (1995) extended the problem by considering ad-
ditional constraints, i.e., due to limited space to store 
the parts and tools, restrictions for the joint assignment 
of tasks to stations are imposed. They proposed a 
mathematical formulation and a cutting plane proce-
dure for this extension of the problem.

Khouja et al. (2000) suggested statistical clustering 
procedures to design robotic assembly cells. Nicosia et 
al. (2002) considered the problem of assigning oper-
ations to an ordered sequence of non-identical work-
stations under the constraints of precedence relation-
ships and a given cycle time. The objective is to mini-
mize the cost of the workstations. This formulation is 
very similar to the rALB problem.

The aforementioned rALB works have assumed that 
the cycle time is predetermined, and aimed at minimiz-
ing the number of workstations or the cost of the as-
sembly systems. Hence, these works are of the call of 
the rALB Type-1 model. Levintin et al. (2006) dealt 

with a rALB Type-2 model, in which different robots 
may be assigned to the assembly line tasks, and each 
robot needs different assembly times to perform a giv-
en task due to its capabilities and specialization. The 
objective is to maximizing the production rate of the 
line. Two genetic algorithms are presented to solve the 
rALB Type-2 model.

Since the number of stations is determined by the 
number of robots in a rAL, in this section we will con-
sider rALB Type-2 model. This model is usually pres-
ent when changes in the production process of a prod-
uct take place. For example, a new product is intro-
duced for assembly. In this case, the rAL has to be re-
configured using the present resources (such as robots) 
so as to improve it efficiency for the new production 
process. The model concerns how to assign the tasks 
to stations and how to allocate the available robots for 
each station in order to minimize the cycle time under 
the constraint of precedence relationships. In this case, 
the number of stations of the line and the available ro-
bots may remain fixed. The following assumptions are 
stated to clarify the setting in which the rALB model 
arises :

A1 : The precedence relations among assembly tasks 
are known and constant.

A2 : The processing times of tasks are deterministic 
and dependent on the assigned robot. 

A3 : A task cannot be split among two or more 
stations.

A4 : There are no limitations on assignment of task 
or robots to any station besides the precedence 
constraints. In case a task can not be processed 
on a robot, the processing time of the task on 
the robot is set to very high.

A5 : A single robot is assigned to each station. 
A6 : Material handling, loading and unloading times, 

as well as set-up and tool changing times are 
negligible, or are included in the activity times. 
This assumption is realistic on a sALB that 
works on the single product for which it is 
balanced. Tooling on such rAL is usually de-
signed such that tool changes are minimized 
within a station. If tool change or other type of 
set-up activity is necessary, it can be included 
in the activity time, since the transfer lot size on 
such line is of a single product.

A7 : The number of stations is determined by the 
number of robots, since the problem aims to 
maximize the productivity by using all robots at 
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Figure 8. Genetic representation of a rALB model

hand. 
A8 : The line is balanced for a single product.

3.5.1 Mathematical Formulation of rALB Models
The rALB Type-2 model focuses on the assignment 

of tasks to stations and to allocate robot for each sta-
tion with the objective of minimum cycle time given 
the number of stations as the available robots.

<Table 4> presents the data set for an example 
rALB model, which contains 10 tasks, 4 robots as-
signed to 4 stations and the processing time of each 
task processed by each robot. Using this data set, the 
precedence graph in <Figure 6> is constructed. 

Table 4. Data set of the rALB model
Task i Suc(i) R1 R2 R3 R4

1 {4} 17 22 19 13
2 {4} 21 22 16 20
3 {5} 12 25 27 15
4 {6} 29 21 19 16
5 {10} 31 25 26 22
6 {8} 28 18 20 21
7 {8} 42 28 23 34
8 {10} 27 33 40 25
9 {10} 19 13 17 34
10 - 26 27 36 26

The precedence graph contains 10 nodes for tasks 
and arcs for orderings. For example, the processing 
time for task 7 by robot 3 is 23 time units. For the 
processing of task 8, tasks 6 and 7 (direct prede-
cessors) and task 4 (indirect predecessor) must be 
completed. Likewise, task 8 must be completed before 
task 10 (direct successor) starts processing.

2

1

4

3 5

6

7

9

8

10

Figure 6. Precedence graph of the rALB model

Using the precedence graph in <Figure 6>, a feasible 
line balance with cycle time 85 time units and 4 sta-
tions can be constructed by the station loads S1 = {2, 

7}, S2 = {3, 5}, S3 = {1, 4, 6}, S4 = {9, 8, 10} (see 
<Figure 3>). While no idle time occurs in station 4, 
but stations 1, 2, and 3, 4 have very long idle times, 
which mean that the line is not effectively balanced. 

Figure 7. A feasible line balance for a rALB model

The mathematical model for the rALB Type-2 can 
be stated as follows : 
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In this mathematical model, the objective (Eq. 14) is 
to minimize the cycle time (cT). In this equation, I,  j is 
index of tasks, k is index of stations, l is index of ro-
bots, m is number of stations (robots), n is number of 
tasks, til is processing time of the task i by robot l. and 
xik, ylk represents the usual integrity restriction. If task j 
is assigned to station k, xik = 1, otherwise, xik = 0. If ro-
bot l is assigned to station k, ylk = 1, otherwise, ylk = 0.

3.5.2 Hybrid GA for rALB Models
To develop a genetic representation for the rALB 

model, there are three main phases :

Phase 1 : Creating a task sequence
step 1.1 : Order encoding for task sequence by 

randomly generating a list of tasks.
step 1.2 : Reordering the tasks to a feasible task 

sequence that satisfies the precedence 
constraints.

step 1.3 : Breakpoint decoding to assign the 
tasks into each station by breakpoint 
decoding.

Phase 2 : Assigning robots to each station
step 2.1 : Order encoding for robot assignment 

by randomly assign the robots to each 
station.
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step 2.2 : Breakpoint decoding to assign the ro-
bots into each station.

Phase 3 : Designing a schedule
step 3.1 : Creating a schedule for the assembly 

line.
step 3.2 : Drawing a Gantt chart for this schedule.

A solution of the rALB model can be represented by 
two integer vectors, i.e., v1 and v2. Task sequence vec-
tor (v1), which contains a permutation of assembly 
tasks, ordered according to their technological prece-
dence sequence, and robot assignment vector (v2). The 
solution representation method can be visually illus-
trated as in <Figure 8>.

<Figure 9> illustrates the process of breakpoint de-
coding procedure on a chromosome. Here, a cycle time 
is said to be feasible if all the tasks can be allocated to 
the stations by allowing as many tasks as possible for 
each station under the constraint of the cycle time.

Figure 9. Breakpoint decoding

Using the chromosomes, the schedule can be con-
structed as follows :

Schedule S = ( j, Ri, t j) :
S = {(t1, R1, 0～17), (t2, R1, 17～38), (t3, R1, 38～50),

(t4, R2, 50～71), (t5, R3, 102～128), (t6, R2, 71～89),
(t7, R3, 128～151), (t8, R4, 151～176), t9, R2, 
89～102),
(t10, R4, 176～202)}

<Figure 10> and <Figure 11> show the Gantt charts 
for one unit and three units of product, respectively.

Figure 10. The balance chart of the best solution

Figure 11. Gantt chart for the rALB model(three units 
of product)

Robot Assignment Search : The neighborhood can 
be defined as the set of solutions obtainable from an 
initial solution by some specified perturbation. A robot 
assignment neighbor solution is generated by exchang-
ing the robot assigned on the critical station with an-
other robot. The robot assignment search is the local 
search which works over robot assignment neigh-
borhood. 

Let N(i) denote the set of machine assignment neigh-
borhood of solution i. The enlarged two-pace machine 
assignment neighborhood is defined as the union of 
the neighborhood of each robot assignment neighbor 
of solution i (see <Figure 12>).

2
( )( ) ( )j N iN i N j∈= ∪

During the robot assignment search, the local search 
will implement over two-pace neighborhood when it 
reaches the local optima of one-pace neighborhood, 
and is called two-pace robot assignment search. Dur-
ing the robot assignment search, when the local optima 
of two-pace robot assignment neighborhood is reached, 
the neighbors of the two-pace local optima help the ro-
bot assignment search escape from the local optima.

Figure 12. Illustration of the neighborhood

3.5.3 Numerical Experiment
In this study, eight representative precedence graphs, 

which are widely used in the sALB Type-1 models 
(Scholl, 1993), are used. These precedence graphs 
contain 25～297 tasks. From each precedence graph, 
four different rALB Type-2 models are generated by 
using different WEST ratios : 3, 5, 7, 10, 15. WEST 
ratio, as defined by Dar-El (1973), measures the aver-
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The Problem Cycle time(ct)

No. 
of 

tasks

No. of 
stations

WEST 
ratio

Levitim 
et al’s 

Recursive

Levitim 
et al’s 
Conse-
cutive

Hyhrid 
GA 

approach

25

3
4
6
9

8.33
6.25
4.17
2.78

518
351
343
138

503
330
234
125

503
327
213
123d

35

4
5
7
12

8.75
7.00
5.00
2.92

551
385
250
178

450
352
222
120

449
344
222
113

53

5
7
10
14

10.60
7.57
5.30
3.79

903
390
35
243

565
342
251
166

554
320
230
162

70

7
10
14
19

10.00
7.00
5.00
3.68

546
313
231
198

490
287
213
167

449
272
204
154

89

8
12
16
21

11.13
7.42
5.56
4.24

638
455
292
277

505
371
246
209

494
370
236
205

111

9
13
17
22

12.33
8.54
6.53
5.05

695
401
322
265

586
339
257
209

557
319
257
192

148

10
14
21
29

14.80
10.57
7.06
5.10

708
537
404
249

638
441
325
210

600
427
300
202

297

19
29
38
50

15.63
10.24
7.82
5.94

1129
571
442
363

674
444
348
275

646
430
344
256

Table 5. The results of the computational experiments

age number of activities per station. This measure in-
dicates the expected quality of achievable solutions 
and complexity of the problem. For each problem, the 
number of station is equal to the number of robots, and 
each task can be processed on any robot.

In this study, a local search method is proposed to 
enhance the search ability of GA. The local search 
method, i.e., Robot Assignment Search, is based on 
critical stations in order to improve their effectiveness 
and efficiency.

To evaluate the performance of the hGA, these 32 
test instances are solved using the hGA approach. 
Additionally, the two algorithms proposed by Levitin 

et al. (2006) are also used to solve the 32 problems. 
<Table 4> presents the performance of the hGA ap-
proach for rALB Type-2 model.

From the result, it can be states that the hGA ap-
proach performs better than Levitin et al.’s two algo-
rithms along with increasing the scale for the pro-
blems. The computational experiments show that this 
algorithm is computationally efficient and effective to 
find the optimal solution. Additionally, <Figure 13> il-
lustrates the evolutionary process of the three algo-
rithms on problem 148-21.

Figure 13. Evolutionary process of problem 148-21

4. Manufacturing and Logistics Model

4.1 Manufacturing Models
Most of the literature on the shop scheduling prob-

lem concentrates on the JSP case (Gen and Cheng, 
1997, 2000). The flexible job-shop scheduling Problem 
(fJSP) is expanded from the traditional Job-shop 
Scheduling Problem, which possesses wider avail-
ability of machines for all the operations. The fJSP re-
cently captured the interest of many researchers. The 
first paper that addresses the fJSP was given by 
Brucker and Schlie (1990), who proposed a poly-
nomial algorithm for solving the fJSP with two jobs, in 
which the machines able to perform an operation have 
the same processing time. For solving the general case 
with more than two jobs, two types of approaches have 
been used : hierarchical approaches and integrated 
approaches. The first was based on the idea of break-
ing down the original problem in order to reduce its 
complexity. Brandimarte (1993) was the first to use 
this breaking down for the fJSP. He solved the assign-
ment problem using some existing dispatching rules 
and then focused on the resulting job shop subpro-
blems, which are solved using a tabu search heuristic. 
Mati et al. (2001) proposed a greedy heuristic for si-
multaneously dealing with the assignment and the se-
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quencing subproblems of the flexible job shop model. 
The advantage of Mati’s heuristic is its ability to take 
into account the assumption of identical machine. 
Kacem et al. (2002) came to use GA to solve fJSP, 
and adapted two approaches to solve jointly the as-
signment and JSP (with total or partial flexibility). The 
first is the approach by localization. It makes it possi-
ble to solve the problem of resource allocation and 
build an ideal assignment mode (assignments schema-
ta). The second is an evolutionary approach controlled 
by the assignment model, and applying GA to solve 
the fJSP. Wu and Weng (2005) considered the prob-
lem with job earliness and tardiness objectives, and 
proposed a multiagent scheduling method. Xia and 
Wu (2005) treated this problem with a hybrid of par-
ticle swarm optimization (PSO) and simulated anneal-
ing (SA) as a local search algorithm. Zhang and Gen 
(2005) and Gen and Zhang (2006) proposed a multi-
stage operation-based genetic algorithm to deal with 
the fJSP problem from the point view of dynamic pro-
gramming.

In order to obtain farthest profit, manufacturing en-
terprises tends to improve the ability of responding to 
the rapidly changing market demands, which require 
the effective and efficient manufacturing of a variety 
of products with varying volume (Su et al. 2003). 
Based on the development of information technique 
and manufacturing conception, IMS is built as the 
most adaptive and available approach for modern re-
quirement. To get an optimal operation sequence with 
flexible resource assignment is the main function of 
IMS, therefore several important issues come to forth 
of the managers, to find an optimal production plan-
ning :

∙ How to get a minimum execution time (makespan) 
for responding the emergency or forecasting or-
ders? 

∙ How to deal with different lot size of orders for 
minimizing the transportation cost by workers or 
robots? 

∙ How to balance the workload of all the machines 
in our plants for reducing the work-in-process in-
ventories and operation bottlenecks? 

∙ How to reduce the complex process on trans-
portations between machines in a local plant?

The integrated operation sequences and resource 
selection (iOS/RS) problem is formulated in particular, 
for the reason that it originally derived from the real 

production process in manufacturing systems, and ap-
proximate to it. For instance, each order consists some 
operations, while the sequences are not fixed, which in 
terms of several precedence constraints; lot size and 
unit load size for different orders are considered in 
scheduling process, which means the starting time of 
operations depend on not only the finishing time of 
preceding operations within the same order but also 
their finishing time of unit load size. 

During the past several years, many researchers have 
put great effort into the area on integrated process 
planning and scheduling problem. Tan (2000) reported 
a briefly review of the research in the process planning 
and scheduling area and discussed the extent of applic-
ability of various approaches, and also proposed a lin-
earized polynomial mixed integer programming model 
for this problem in recent research work (Tan, 2004). 
Dellaert et al. (2000) discussed multi-level lot-sizing 
problem in material requirements planning (MRP) 
systems. They developed a binary encoding genetic al-
gorithm (GA) and design five specific genetic oper-
ators to ensure that exploration takes place within the 
set of feasible solutions. Raa and Aghezzaf (2005) also 
introduced a robust dynamic planning strategy for 
lot-sizing problems with stochastic demands in their 
recent research work. Recently, for improving the 
flexibility of machine assignment, Kacem et al. (2002) 
proposed a genetic algorithm controlled by the as-
signed model which is generated by the approach of 
localization. Najid et al. (2002) used SA for optimiz-
ing the flexible assignment of machines in fJSP. Lopez 
and Ramirez (2005) newly describe the design and im-
plementation of a step-based manufacturing informa-
tion system to share flexible manufacturing resources 
data.

Anyway, all those research above considered the al-
ternative machines for each operation, and they want-
ed to apply their model for solving the flexible assign-
ment of various resources (machines). However, there 
exists a weakness which is fixing all the operation se-
quence or non-constraint operation sequence. That is 
they ignore the flexibility especially for orders, which 
consists some precedence constraints and the corre-
sponding sequences is also alternative.

Especially in recent work by Moon (2004a, 2004b), 
a GA approach is proposed to solve such kind iOS/RS 
problem considering the orders with unfixed operation 
sequence, however, it encoded the chromosome only 
considering the information of operation sequence, 
and hybridized with some heuristic strategy for re-
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Figure 14. Block diagram of experimental 
scheduling system

source selection (by minimum processing time). This 
approach actually improves the efficiency of con-
vergence and the speed of calculation, but may loose 
some optimal solution, because they ignore the tran-
sition time between different machines. To avoid this 
limitation, we propose an effective coding approach to 
formulate the iOS/RS model into two-dimensional. 
The new idea is built on the basic concept of multi-
stage decision making (MSDM) model. We separate 
all the operations as a set of stages, and in each stage 
(operation) several alternative states (machines) are of-
fered for selection, hence our job is to make a decision 
in all the stages for choosing states and get an optimal 
schedule. For this reason we formulate a multistage 
operation-based genetic algorithm (moGA) proposed 
by Gen and Zhang (2006), and define the chromosome 
with two vectors which contains both of the two in-
formation, operation sequence and machine selection.

In manufacturing industries, information systems be-
come more important to apply in today’s rapidly 
changing global business environment. Scheduling 
subsystem is a main module of a manufacturing in-
formation system. Until now, the main purpose of 

scheduling was improvement of equipment operation 
rate and reduction of cost by the mass production. 
However, at the present, manufacturers must make 
plans and schedules considering many kind of custom-
er’s demand. Therefore, it is necessary to consider var-
ious elements in the optimization of schedule such as 
not only simple manufacturing scheduling but also lo-
gistics, inventory control, and etc. <Figure 14> shows 
a block diagram of the scheduling system.

It is difficult to construct the information system in-
cluding large number of elements as a single system. 
The enlarged system including various elements be-
comes difficult to read, change and improve. Moreover, 
the requirement specification of the system changes in 
today, while the system has been designed by spend-
ing time. PSLX (PSLX Consortium, 2003) proposes 
the method to construct the APS system by small sub-
systems called agents, and functions of the system are 
realized by the cooperation of agents. The stand-
ardization of the data format for the communication is 
important to realize cooperation of agents. Recently, 
XML (Extensible Markup Language) (W3C, 2004) is 
widely utilized to exchange data on the Internet. For 
example, PSLX and MESX (MESX Joint Working 
Group, 2004) developed the standards based on XML 
for industries. (Okamoto et al., 2005) proposed a 
GA-based scheduling agent for APS system using 
XML, and suggested manufacturing scheduling sub-
system is the most important module on APS system. 
The system has extensible structure according to the 
merit of GA and XML.

4.2 Logistics Models
In traditional logistics system, the focus of the in-

tegration of logistics system is usually on single ob-
jective such as minimum cost or maximum profit. For 
example, Jayaraman and Prikul (2001, Jayaraman and 
Ross (2003), Yan et al. (2003), Syam (2002), Syarif et 
al. (2002), Amiri (2004), Gen and Syarif (2005), Truong 
and Azadivar (2005), and Gen et al. (2006) had con-
sidered total cost of logistics as an objective function 
in their studies. However, there are no design tasks 
that are single objective problems. The design/plan-
ning/scheduling projects are usually involving trade- 
offs among different incompatible goals. Recently, 
multi objective optimization of logistics has been con-
sidered by different researchers in literature. Sabri and 
Beamon (2000) developed an integrated multi-objec-
tive supply chain model for strategic and operational 
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Figure 15. A simple network of three stages in a 
supply chain network

supply chain planning under uncertainties of product, 
delivery and demand. While cost, fill rates, and flexi-
bility were considered as objectives, and constraint 
method had been used as a solution methodology. 
Chan and Chung (2004) proposed a multi-objective 
genetic optimization procedure for the order dis-
tribution problem in a demand driven logistics. They 
considered minimization of total cost of the system, 
total delivery days and the equity of the capacity uti-
lization ratio for manufacturers as objectives. Chen 
and Lee (2004) developed a multi-product, multi- 
stage, and multi-period scheduling model for a mul-
ti-stage logistics with uncertain demands and product 
prices

As objectives, fair profit distribution among all par-
ticipants, safe inventory levels and maximum custom-
er service levels, and robustness of decision to un-
certain demands had been considered, and a two- 
phased fuzzy decision-making method was proposed 
to solve the problem. Erol and Ferrell (2004) proposed 
a model that assigning suppliers to warehouses and 
warehouses to customers. They used a multi-objective 
optimization modeling framework for minimizing cost 
and maximizing customer satisfaction. Guillen et al., 
(2005) formulated the logistics network model as a 
multi-objective stochastic mixed integer linear pro-
gramming model, which was solved by e-constraint 
method, and branch and bound techniques. Objectives 
were SC profit over the time horizon and customer sat-
isfaction level. Chen et al. (2005) developed a hybrid 
approach based on genetic algorithm and analytic hi-
erarch process (AHP) for production and distribution 
problems in multi-factory supply chain models. Oper-
ating cost, service level, and resources utilization had 

been considered as objectives in their study. Altipar-
mak et al. (2006, 2007) developed multiobjective ge-
netic algorithms for a single-source, single and mul-
ti-product, multi-stage SCN design problems. The 
studies reviewed above have found a Pareto-optimal 
solution or a restrictive set of Pareto-optimal solutions 
based on their solution approaches for the problem. 
Illustration of a simple network of three stages in sup-
ply chain network is shown in <Figure 15>.

4.3 Combination of Manufacturing and 
Logistics Model

In contemporary manufacturing, meeting promised 
delivery dates requires production schedules that take 
into account elements such as transportation. Previous-
ly scheduling focused on improvements in facility 
workloads and achieving cost reductions through mass 
production. Traditional manufacturing scheduling sys-
tems consider only manufacturing constraints while 
transportation scheduling systems typically consider 
only total vehicle mileage. These traditional systems 
cannot provide schedules that accommodate customer 
demands for just-in-time delivery (Okamoto, 2007).

It is difficult to develop a monolithic manufacturing 
scheduling system that includes large number of ele-
ments. Very large scheduling systems are difficult to 
develop and are inflexible. Furthermore, changes in 
system specifications often occur during system design. 
Okamoto et al. (2005) proposed a method for con-
structing a manufacturing system using XML to ex-
change data among small subsystems including a 
scheduler based on a genetic algorithm (GA). This 
system responds even to a slight change in the con-
straint by adding a penalty to the adaptation value, 
which is performed by the genetic algorithm.

Moon et al. (2004a, 2004b) integrated process plan-
ning and production scheduling in an APS model that 
included the factor of transportation. Okamoto et al. 
(2006a), (2006b) expanded Moon’s model by integrat-
ing the manufacturing process and transportation be-
tween plants and proposed a solution based on the ge-
netic algorithm. Most of the studies concerning sched-
uling that consider both manufacturing and trans-
portation (Lee and Chen, 2001), (Soukhal et al., 2005) 
have established a number of resource and trans-
portation restrictions to systematize the problem from 
the viewpoint of complexity. These approaches offer 
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only specialized solutions.
This section describes an integrated manufacturing 

and logistics model that incorporates pickup and 
delivery. In comparison with previous studies (Oka-
moto et al., 2006a, Okamoto et al., 2006b, Zhang, 
2006), this model accommodates a single vehicle that 
transports multiple materials, intermediate, and fin-
ished products. We also developed a scheduler using a 
multiobjective genetic algorithm that minimizes both 
makespan and vehicle mileage.

4.3.1 Mathematical Formulation
When manufacturing and transportation schedules 

are created separately, the results of one become the 
constraints of the other. For example, the starting and 
completion times of the production schedule become 
time-window constraints in the transportation schedul-
ing. On the contrary, the transportation schedule de-
fines the earliest start time and latest completion time 
of the manufacturing process. Some approaches can 
reduce the constraint violation by considering the sch-
eduling of manufacturing and transportation separately. 
However, some of these find a solution by combining 
local optimum solutions, but not by finding a global 
optimum. In addition, some approaches arrive at a sol-
ution that does not satisfy all constraints.

Most manufacturing scheduling problems, such as 
the JSP, are problems relating to process sequencing. 
For some problems, such as fJSP, machine selection is 
an issue. Transportation problems, such as the vehicle- 
routing problem (VRP), relate to routing (round-order 
sequencing) and vehicle-assignment. However, both 
manufacturing and transportation problems deal with 
two issues; sequencing and selection. Global optimiza-
tion is possible only by deciding the sequence through 
integration, since it mutually and largely influences the 
result.

In our model, pickup and delivery services are consid-
ered as operations. For a production process using re-
sources in different locations, service time and trans-
portation time are considered. We then create different 
schedules by integrating pickup and delivery as operations.

In this problem, we make the following assumptions :

A1 : All resources including machines and vehicles 
are available at the same time (t = 0) and all 
operations can be started at t = 0.

A2 : The predecessors of manufacturing processes 
are given for each order.

A3 : At any given time, a resource can only execute 
one operation. A machine can execute a proc-
ess and a vehicle can execute a pickup/delivery 
service or provide transportation. It becomes 
available for other operations once the oper-
ation currently assigned to it is completed.

A4 : When a process is assigned a different machine 
(B) from the previous process (A), then pickup 
at (A), transportation from (A) to (B), and de-
livery at (B) must be scheduled.

This model views the problem as a multiobjective 
optimization problem, and minimizes makespan and 
vehicle mileage. Objectives are as follows :

min { }M ,
max= kii k

c c (15)

min 
1 0 0= = = ∈ ∈

=∑∑∑ ∑ ∑
V N N

mn gm hn ghv
v m n g U h U

T d a a y (16)

Equation 15 is the objective function that minimizes 
the makespan. Equation 16 is the objective function 
that minimizes total mileage of all the vehicles. 
<Figure 16> describes that the product pickup does 
not occur earlier than the end of the process, and the 
material delivery is completed before starting the 
process. The detail descriptions are shown in Gen et 
al. (2008).
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Figure 16. Operation time considering pickup and 
delivery

4.3.2 Multiobjective Hybrid Genetic Algorithm
The Multistage Operation-based Genetic Algorithm 

(Scheduler moGA) for the scheduling agent (Okamo-
to, 2007) is based on a multistage decision model. This 
algorithm uses an enhanced GA-based discrete dynam-
ic programming (DDP) approach, proposed by Yang 
(Yang, 2001) for generating schedules in FMS envi-
ronments. The scheduler moGA approach consists of 
two parts; sequencing operations and selecting re-
sources. To apply the scheduler moGA to a new in-
tegrated scheduling problem, we modified a few chro-
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mosome designs. 
To develop a multistage operation-based genetic rep-

resentation for the problem, there are 3 main phases :

Phase 1 : Creating an operation sequence
step 1.1 : Generate a random priority to each 

operation using encoding procedure 
for first vector v1.

step 1.2 : Decode a feasible operation sequence 
that satisfies the precedence const-
raints.

Phase 2 : Assigning operations to machine
step 2.1 : Input the operations sequence found 

in step 1.2.
step 2.2 : Generate a permutation encoding for 

machine assignment of each oper-
ation (second vector v2).

Phase 3 : Designing a schedule
step 3.1 : Create a schedule S using task se-

quence and processor assignments.
step 3.2 : Draw a Gantt chart for this schedule.

In this section, the data set shown in <Table 6> is 
used for explanation. 

Table 6. Simple example of processing time pkim

M1 M2 M3

o11 - - 40
o12 30 70 -
o13 - - 40
o21 40 - 20
o22 - 30 40
o23 60 90 -

4.3.2.1 Sequencing Operations
A random key-based representation (Gonçalves et 

al., 2005), (Gen, and Cheng, 2000) is used for the op-
eration sequence. Any chromosome formed by cross-
over, mutation, and random generation is a feasible 
solution. It contributes to the reduction of the com-
plexity of genetic operations, since the complicated re-
pair process is not required. An example case of a 
chromosome is shown in <Figure 17>.

0.71 0.95 0.67 0.48 0.83 0.34 0.42 0.80 0.75 0.17 0.40 0.78 0.27Priority v1(i):

Operation ID i: 1 2 3 4 5 6 7 8 9 10 11 12 13

0.13

14
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0.13

14

Figure 17. Chromosome v1 drawn by random key- 
based encoding

A feasible operation sequence can be obtained thr-
ough decoding. The result of this case is as follows :

Q = { 4, 11, 1, 7, 12, 8, 5, 13, 14, 6, 2, 9, 10, 3 }
= { o21, oP

212, o11, oP
112, oD

212, oD
112, o22, 

      oP
223, oD

223, o23, o12, oP
123, oD

123, o13 }

4.3.2.2 Selecting Resources
After completing the sequencing operations, the po-

sition of all stages (operations) is determined. There-
fore, it is possible to select resources through a multi-
stage decision making process. The delivery gene is 
not used in order to ensure that the same vehicle is al-
ways allocated for pickup. For this reason, in this ex-
ample, genes of ID 8, 10, 12, and 14 are empty. As the 
result of this example, a chromosome can be drawn as 
shown in <Figure 18>.

3 1 3 3 2 2 4 4 4 4Resource v1(i):

Operation ID i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 1 3 3 2 2 4 4 4 4Resource v1(i):

Operation ID i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 18. Chromosome v2 drawn by resource 
permutation encoding procedure

A feasible operation sequence and resource selection 
can be obtained through decoding. The result of this 
case is as follows :

S = { (o21, M3), (oP
212, V1), (o11, M3), (oP

112, V1),
(oD

212, V1), (oD
112, V1), (o22, M2), (oP

223, V1),
(oD

223, V1), (o23, M2), (o12, M1), (oP
123, V1),

(oD
123, V1), (o13, M3) }

4.3.2.3 Scheduling
The schedule is created based on the decided oper-

ation sequence and resource selection. The starting 
time of each operation is allocated at the earliest possi-
ble time. It is best for the operation to end early for the 
two objective functions. But the service is deleted as 
there is no necessity for transportation in this step. In 
this example, oP

223 and oD
223 are deleted because o22 

and o23 are assigned to the same machine. The sched-
uling result is as follows :

S = { (o21, M3 : 0-20), (oP
212, V1 : 20-30), 

(o11, M3 : 35-75), (oP
112, V1 : 75-85), 

(oD
212, V1 : 40-50), (oD

112, V1 : 99-109), 
(o22, M2 : 50-80), (oP

223, - : -), (oD
223, - : -), 

(o23, M2 : 95-185), (o12, M1 : 109-139), 
(oP

123, V1 : 139-149), (oD
123, V1 : 163-173), 

(o13, M3 : 173-213) }
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M1 M2 M3 M4 M5 M6

o11 50 - - - 100 90
o12 - 80 - 90 - -
o13 - - 60 - 40 50
o21 - 90 - - - -
o22 50 - - 70 100 90
o23 - 50 60 - - 70
o24 90 - - 70 - -
o31 - 70 - - - -
o32 60 - 80 - 100 -
o33 - 60 - 100 - 70
o41 60 - 90 70 80 -
o42 - - 100 - - 90
o43 - 100 - 90 - 70
o51 70 - 90 - 100 -
o52 - - - 80 - -
o53 80 70 40 - 70 -
o54 - - - 50 - 60
o61 - - 60 - - 100
o62 90 90 - 70 60 -
o63 90 100 110 - - -
o71 - - 70 - 100 -
o72 - 90 - 90 100 -
o73 90 - 80 - - 100
o81 - 90 - 40 - 100
o82 70 - 90 - 100 -
o83 - - - 60 70 -
o84 30 70 - - - -

Table 7. Experimental dataset of processing time pkim

The Gantt chart in <Figure 19> shows this sample 
schedule.
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Figure 19. Gantt chart of scheduling result from 
the example dataset

4.3.2.4 Schedule improvement
Hybrid genetic algorithms (hGA) (Gen and Cheng, 

2000) combine GA with other techniques, such as lo-
cal search heuristics, in order to offset the problems in-
herent in GA. Changing operations in the critical path 
is an effective way of improving scheduling solutions. 
In this problem, we have two approaches to shift 
bottlenecks. One is to change the process order for 
each machine (Type A). The other is to change the 
service order in each vehicle (Type B).

In this study, a local search is applied only for the 
first rank, best-solution candidates. The solution candi-
dates are divided into three areas, and different types 
of local searches apply to each area (<Figure 20>). 
Generally, in a scheduling problem, the decoding pro-
cedure consumes a great deal of time. Therefore, if lo-
cal searches repeat calls to the decoding procedure for 
all chromosomes, the algorithm takes an enormous 
amount of time. 
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Figure 20. Local search for multiobjective problem

4.3.3 Numerical Experiment
The main module of this system is GA Scheduler as 

an implementation of algorithms that explained in pre-
vious section.

This example problem requires scheduling eight or-
ders, in a six-machine, four-vehicle environment. The 
experimental dataset consists of processing timetable 
(<Table 7>) and machine locations (<Figure 21>), 
which are randomly generated. Other dataset and ge-
netic parameters are :

V = 1, 2, 3, 4
U 30, ( , ), ( , )= ∀kiljt k i l j

pC = 0.7, 
pM = 0.2,
popSize = 100, 
maxGen = 100
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Figure 23. Gantt chart of an experimental result 
(V = 4, cM = 989, T = 333)
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Figure 24. Best compromised solutions of the 
experimental results

Local search methods :
(1) Apply local search to all solution candidates
(2) Proposed method
The Gantt charts of the representative experimental 

results solved by the local search methods (1) and (2) 
are shown in <Figure 22> and <Figure 23>, respec-
tively. All best compromised solutions are shown as a 
Pareto graph in <Figure 24>. The final results show no 
difference between local search methods (1) and (2). 
However, the proposed method (2) required about 50 
～70% of the computation time of method (1). Then, 
its effectiveness was confirmed.
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Figure 21. Resource locations for the numerical 
experiment
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Figure 22. Gantt chart of an experimental result 
(V = 4, cM = 918, T = 798)

5. Conclusions

In this survey paper we introduced the background of 

Advanced planning and scheduling (APS), and catego-
rize the topics into three issues as many recent applica-
tion of Evolutionary Technique are introduced based 
on some kinds of effective encoding methods.

Furthermore, for these issues we selected some hot 
topic and used some benchmark cases for making ex-
periment : job-shop scheduling (JSP), assembly line 
balancing (ALB) model, and integrated scheduling 
models for manufacturing and logistics. For each top-
ic, some effective encodings introduced to demon-
strate concrete optimization problems among all the 
issues. Finally, we set out some related experimental 
result in case study and shown the performance of ef-
fectiveness of evolutionary approaches.
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