• Title/Summary/Keyword: Jet growth

Search Result 99, Processing Time 0.029 seconds

The study of the breakup mechanism of a liquid jet by using a high speed camera (고속도카메라에 의한 액주의 분열기구에 관한 연구)

  • 김덕줄;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.708-716
    • /
    • 1989
  • The purpose of this study is to investigate the breakup mechanism of a liquid jet in a coaxial air flow. By using the high speed camera, measured were the instantaneous change of the wave length, amuplitude of disturbance, propagation velocity of wave and breakup length, and the relationships between those data were examined. The shape of the surface of the liquid jet appeared to be rather complicated and irregular. The growth rate of disturbance was not constant, and was changed at the moment of 3ms prior to the disintegration of the liquid jet. Simultaneously at this moment, the propagation velocities of the sequential waves were reversed and the wave length was rapidly decreased.

100KW DC Arc Plasma of CVD System for Low Cost Large Area Diamond Film Deposition

  • Lu, F.X.;Zhong, G.F.;Fu, Y.L.;Wang, J.J.;Tang, W.Z.;Li, G.H.;Lo, T.L.;Zhang, Y.G.;Zang, J.M.;Pan, C.H.;Tang, C.X.;Lu, Y.P.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.216-220
    • /
    • 1996
  • In the present paper, a new type of DC arc plasma torch is disclosed. The principles of the new magnetic and fluid dynamic controlled large orifice long discharge tunnel plasma torch is discussed. Two series of DC Plasma Jet diamond film deposition equipment have been developed. The 20kW Jet equipped with a $\Phi$70 mm orifice torch is capable of deposition diamond films at a growth rate as high as 40$\mu\textrm{m}$/h over a substrate area of $\Phi$65 mm. The 100kW high power Jet which is newly developed based on the experience of the low power model is equipped with a $\Phi$120 mm orifice torch, and is capable of depositing diamond films over a substrate area of $\Phi$110 mm at growth rate as high as 40 $\mu\textrm{m}$/h, and can be operated at gas recycling mode, which allows 95% of the gases be recycled. It is demonstrated that the new type DC plasma torch can be easily scaled up to even higher power Jet. It is estimated that even by the 100kW Jet, the cost for tool grade diamond films can be as low as less than $4/carat.

  • PDF

Printability of digital color ceramic ink on glazed surface of ink-jet printed ceramic tile (디지털 프린팅용 세라믹 잉크의 유약표면 인쇄적성 및 특성평가)

  • Kim, Jin-Ho;Hwang, Kwang-Taek;Cho, Woo-Seok;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.256-262
    • /
    • 2017
  • Digital ink-jet printing technology using ceramic ink, which is thermally stable at high temperature above $1000^{\circ}C$, has an advantage of eco-friendly process applicable to manufacturing products with an excellent durability and various designs. Recently, replacement from conventional manufacturing process to digital process using ink-jet printing technique has been significantly accelerated in ceramic tile industry. In this study, we investigated ink-jet printability of ceramic ink on ceramic tile. Cyan, magenta, yellow, black ceramic inks, which are digital primary color of ink-jet printing, were printed on glazed surface of ceramic tiles, and their printabilities were comparatively analyzed. High temperature sintering process is generally required for manufacturing ceramic products, thus effect of sintering process on printed pattern of ceramic ink was also investigated by analyzing ink penetration depth and ink dot area.

An Experimental Study on Wafer Demounting by Water Jet in a Waxless Silicon Wafer Mounting System

  • Kim, Kyoung-Jin;Kwak, Ho-Sang;Park, Kyoung-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.31-35
    • /
    • 2009
  • In the silicon wafer polishing process, the mounting stage of silicon wafer on the ceramic carrier block has been using the polishing template which utilizes the porous surface instead of traditional wax mounting method. Here in this article, the experimental study is carried out in order to study the wafer demounting by water jet and the effects of operating conditions such as the water jet flowrate and the number of water jet nozzles on the wafer demounting time. It is found that the measured wafer demounting time is inversely proportional to the water flowrate per nozzle, regardless of number of nozzles used; implying that the stagnation pressure by the water jet impingement is the dominant key factor. Additionally, by using the transparent disk instead of wafer, the air bubble formation and growth is observed under the disk, making the passage of water flow, and subsequently demounting the wafer from the porous pad.

  • PDF

Numerical Analysis for the Soot Formation Processes in Acetylene-Air Nonpremixed Turbulent Jet Flame (아세틸렌/공기 비예혼합 난류 제트화염의 Soot 생성에 대한 수치해석)

  • 김후중;김용모;윤명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.80-89
    • /
    • 2002
  • The flame structure and soot formation in Acetylene-Air nonpremixed jet flame are numerically analyzed. We employed two variable approach to investigate the soot formation and oxidation processes. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of pyrene and acetylene. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical model used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reaction flow field.

Control of Flow-Induced Noise from a Round Jet using Active Excitation (능동 가진을 이용한 원형 제트에서의 유동 소음 제어)

  • Kim, Jung-Woo;Cha, Seong-Dae;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.798-803
    • /
    • 2003
  • The objective of the present study is to investigate the changes in the acoustic source characteristics and far-field noise propagation in an incompressible round jet at Re=10000 for single-frequency excitations using large eddy simulation and Lighthill acoustic analogy. We apply excitations at a frequency corresponding to the jet-column mode ($St_{D}=0.85$) or maximum growth rate in the shear layer ( $St_{\theta}=0.017$ ). The acoustic source derived from the Lighthill acoustic analogy is the second spatial derivative of the Reynolds stresses. In the case of $St_{D}=0.85$, vortex ring and large scale structures are dominant sources, whereas in the case of $St_{\theta}=0.017$, the main sources are located at an upstream position along the shear layer than in the uncontrolled case. Also, the far-field noise propagates along the axial direction due to excitation.

  • PDF

Risk Analysis of Jet Flame Occurred at Hydrogen Fuel Cell Vehicle (수소자동차의 제트화염 발생에 따른 위험성 분석)

  • Byoungjik, Park;Yangkyun, Kim;Ohk Kun, Lim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.158-165
    • /
    • 2022
  • Eco-friendly policies proposed by the government of The Republic of Korea have encouraged the use of eco-friendly vehicles. Hydrogen vehicles have exhibited the highest growth rate, although the current number of registered vehicles is low. In hydrogen vehicles, a thermally activated pressure relief device (TPRD) is installed to prevent explosions in the hydrogen gas cylinder. When discharged due to low ignition energy, hydrogen gas readily forms a jet flame. The risks induced by such jet flames were analyzed through a numerical analysis. Jet flames can activate TPRDs installed in nearby hydrogen gas cylinders. As a result, high-voltage cables exposed in the lower area of a vehicle can ignite within seconds. There was a 9.5-kW/m2 area around the vehicle (which can result in casualties) at a distance of ~5 m from the hydrogen gas cylinder, and a 37.5-kW/m2 area (which can cause significant damage) in the form of an inverted triangle toward the lower section of the vehicle. We believe that the risk factors analyzed herein should be considered for addressing accidents in hydrogen vehicles.

Numerical analysis of liquid flow characteristics according to the design parameters of a bubble jet microactuator (마이크로 엑츄에이터의 설계변수에 따른 유동특성 해석)

  • Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.605-612
    • /
    • 2016
  • A numerical analysis was performed on the effect of the design parameters of a bubble jet type microactuator on its liquid flow characteristics. The numerical models included the ink flow from the reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of the refilling process. Because the bubble behavior is a very important parameter for the overall actuator performance, the bubble growth and collapse phenomena in an open pool were simulated in the present study. The drop ejection and refill process were numerically predicted for various geometries of the nozzle, chamber, and restrictor of the bubble jet microactuator. The numerical results from varying the design parameters can help with predicting the performance and optimizing the design of a microactuator.

Formulation and ink-jet 3D printability of photo curable nano silica ink (광경화 나노 실리카 잉크의 합성 및 잉크젯 프린팅 적층 특성평가)

  • Lee, Jae-Young;Lee, Ji-Hyeon;Park, Jae-Hyeon;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.345-351
    • /
    • 2019
  • Recently, ink-jet printing technology has been applied for various industries such as semiconductor, display, ceramic tile decoration. Ink-jet printing has advantages of high resolution patterning, fast printing speed, high ink efficiency and many attempts have been made to apply functional materials with excellent physical and chemical properties for the ink-jet printing process. Due to these advantages, research scope of ink-jet printing is expanding from conventional two-dimensional printing to three-dimensional printing. In order to expand the application of ink-jet printing, it is necessary to optimize the rheological properties of the ink and the interaction with the substrate. In this study, photo curable ceramic complex ink containing nano silica particles were synthesized and its printability was characterized. Contact angle of the photo curable silica ink were modified by control of the ink composition and the surface property of the substrate. Effects of contact angle on printing resolution and three-dimensional printability were investigated in detail.

Augmentation of Heat Transfer on a Flat Plate with Impinging Water Jet (衝突水噴流 에 의한 熱傳達促進 에 관한 硏究)

  • 엄기찬;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.301-307
    • /
    • 1982
  • The purpose of this investigation is to study heat transfer characteristics at a stagnation point on a flat plate caused by upward impinging water jet. At the stagnation point, heat transfer results by impinging water jet are being compared with the ones with supplementary water. Optimum supplementary water quantity are supplied in order to improve the effect of heat transfer for each nozzle-to-plate distance. As the nozzle outlet velocity increases, the heat transfer coefficient at stagnation point consequently increases. Changing the nozzle-to-plate distance, growth rate of heat transfer also varies accordingly. This optimum range of Reynolds number is obtained to improve heat transfer effect.