DOI QR코드

DOI QR Code

Formulation and ink-jet 3D printability of photo curable nano silica ink

광경화 나노 실리카 잉크의 합성 및 잉크젯 프린팅 적층 특성평가

  • Lee, Jae-Young (Icheon Branch, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Ji-Hyeon (Icheon Branch, Korea Institute of Ceramic Engineering & Technology) ;
  • Park, Jae-Hyeon (Icheon Branch, Korea Institute of Ceramic Engineering & Technology) ;
  • Nahm, Sahn (Department of Material Science and Engineering, Korea University) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering & Technology) ;
  • Han, Kyu-Sung (Icheon Branch, Korea Institute of Ceramic Engineering & Technology)
  • 이제영 (한국세라믹기술원 도자기술융합센터) ;
  • 이지현 (한국세라믹기술원 도자기술융합센터) ;
  • 박재현 (한국세라믹기술원 도자기술융합센터) ;
  • 남산 (고려대학교 신소재공학부) ;
  • 황광택 (한국세라믹기술원 도자기술융합센터) ;
  • 김진호 (한국세라믹기술원 도자기술융합센터) ;
  • 한규성 (한국세라믹기술원 도자기술융합센터)
  • Received : 2019.09.28
  • Accepted : 2019.10.28
  • Published : 2019.12.31

Abstract

Recently, ink-jet printing technology has been applied for various industries such as semiconductor, display, ceramic tile decoration. Ink-jet printing has advantages of high resolution patterning, fast printing speed, high ink efficiency and many attempts have been made to apply functional materials with excellent physical and chemical properties for the ink-jet printing process. Due to these advantages, research scope of ink-jet printing is expanding from conventional two-dimensional printing to three-dimensional printing. In order to expand the application of ink-jet printing, it is necessary to optimize the rheological properties of the ink and the interaction with the substrate. In this study, photo curable ceramic complex ink containing nano silica particles were synthesized and its printability was characterized. Contact angle of the photo curable silica ink were modified by control of the ink composition and the surface property of the substrate. Effects of contact angle on printing resolution and three-dimensional printability were investigated in detail.

디지털 잉크젯 프린팅 기술은 고해상도, 빠른 인쇄 속도, 높은 잉크 효율과 같은 장점과 함께 다양한 소재 적용이 용이하여 반도체, 디스플레이, 세라믹 타일 등의 산업 분야에서 주목을 받고 있다. 최근에는 전통적인 잉크 소재에서 벗어나 우수한 내열성, 내광성, 내화학성 등을 보이는 기능성 소재도 잉크젯 프린팅 공정에 적용하려는 시도가 활발히 진행되고 있다. 특히 2차원 인쇄뿐만 아니라 3차원 적층인쇄에 관한 연구도 시작되고 있으며 이를 위해서는 토출되는 잉크의 유변학적 물성과 프린트되는 기판과의 상호작용를 제어하는 것이 필수적이다. 본 연구에서는 나노 실리카 입자가 포함된 광경화성 세라믹 잉크를 합성하고 잉크의 물성과 프린팅 기판의 표면특성을 제어하였다. 나노 실리카 입자가 포함된 광경화성 세라믹 잉크의 퍼짐현상을 억제하고 기판과의 접촉각 특성을 개선함으로써 결과적으로 프린팅 해상도 및 적층성을 향상시켰으며 잉크젯 프린팅을 이용한 광경화 나노 실리카 잉크의 3D 프린팅에 대한 가능성을 확인하였다.

Keywords

References

  1. B.J. De Gans, P.C. Duineveld and U.S. Schubert, "Inkjet printing of polymers: state of the art and future developments", Adv. Mater. 16 (2004) 203. https://doi.org/10.1002/adma.200300385
  2. H.S. Koo, M. Chen, P.C. Pan, L.T. Chou, F.M. Wu, S.J. Chang and T. Kawai, "Fabrication and chromatic characteristics of the greenish LCD colour-filter layer with nano-particle ink using inkjet printing technique", Displays. 27 (2006) 124. https://doi.org/10.1016/j.displa.2006.04.001
  3. C. Check, R. Chartoff and S. Chang, "Inkjet printing of 3D nano-composites formed by photopolymerization of an acrylate monomer", Reactive and Functional Polymers. 97 (2015) 116. https://doi.org/10.1016/j.reactfunctpolym.2015.09.009
  4. J.B. Szczech, C.M. Gamota and J. Zhang, "Fine-line conductor manufacturing using drop-on demand PZT printing technology", IEEE Transactions on Electronics Packaging Manufacturing 25 (2002) 26. https://doi.org/10.1109/TEPM.2002.1000480
  5. H.S. Koo, M. Chen, P.C. Pan, L.T. Chou, F.M. Wu and S. Chang, "Fabrication and chromatic characteristics of the greenish LCD colour-filter layer with nano-particle ink using inkjet printing technique", Displays. 27 (2006) 124. https://doi.org/10.1016/j.displa.2006.04.001
  6. S.K. Song, J.H. Hwang and K.R. Ha, "Spectroscopic analysis of silica nanoparticles modified with silane coupling agent", Korean Chem. Eng. Res. 49 (2011) 181. https://doi.org/10.9713/kcer.2011.49.2.181
  7. J.W. Lee, S. Nahm, K.T. Hwang, J.H. Kim and K.S. Han, "The effect of silica composite properties on DLP-stereolithography based 3D printing", J. Korean Cryst. Growth Cryst. Technol. 29 (2019) 54. https://doi.org/10.6111/JKCGCT.2019.29.2.054
  8. D. Gardini, M. Blosi, C. Zangelli and M. Dondi, "Ceramic ink-jet printing for digital decoration: physical constraints for ink design", J. Nanosci. Nanotechnol. 15 (2015) 3552. https://doi.org/10.1166/jnn.2015.9857
  9. Y. Son, C. Kim, D. Yang and D.J Ahn, "Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers", Langmuir. 24 (2008) 2900. https://doi.org/10.1021/la702504v
  10. J.H. Oh and S.Y. Lim, "Precise size control of inkjetprinted droplets on a flexible polymer substrate using plasma surface treatment", J. Micromech. Microeng. 20 (2009) 015030. https://doi.org/10.1088/0960-1317/20/1/015030
  11. Y. Guo, H.s. Patanwala and B. Bognet, "Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance", Rapid Prototyp. J. 23 (2017) 562. https://doi.org/10.1108/RPJ-05-2016-0076
  12. E. Saleh, P. Woolliams, B. Clarke and A. Gregory, "3D inkjet-printed UV-curable inks for multi-functional electromagnetic applications", Additive Manufacturing 13 (2017) 143. https://doi.org/10.1016/j.addma.2016.10.002
  13. B. Derby, "Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution", Annual Review of Materials Research 40 (2010) 395. https://doi.org/10.1146/annurev-matsci-070909-104502
  14. J.W. Kwon, J.H. Lee, K.T. Hwang, J.H. Kim and K.S. Han, "Rheological behavior and ink-jet printing characteristics of aqueous ceramic complex ink", J. Korean Cryst. Growth Cryst. Technol. 28 (2018) 123. https://doi.org/10.6111/JKCGCT.2018.28.3.123
  15. K.C. Wu and J.W. Halloran, "Photopolymerization monitoring of ceramic stereolithography resins by FTIR methods", J. Mater. Sci. 40 (2005) 71. https://doi.org/10.1007/s10853-005-5689-y
  16. K.C. Wu and J.W. Halloran, "Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization", Annual Review of Materials Research 46 (2016) 19. https://doi.org/10.1146/annurev-matsci-070115-031841
  17. X. Zhang, X.N. Jiang and C. Sun, "Micro-stereolithography of polymeric and ceramic microstructures", Sensors and Actuators A: Physical. 77 (1999) 149. https://doi.org/10.1016/S0924-4247(99)00189-2