• Title/Summary/Keyword: Jet Temperature

Search Result 694, Processing Time 0.028 seconds

A Numerical Study of Turbulent Flow and Heat Transfer due to Slot-jet impinging on a Moving flat plate (이동평판에 작용하는 슬롯 충돌제트의 유동 및 열전달에 관한 수치적 연구)

  • Lee, Jong-Seok;Kim, Dong-Keon;Kim, Moon-Kyung;Yoon, Soon-Hyun;Kim, Bong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2798-2803
    • /
    • 2008
  • The confined slot air jet impinging normally on a moving flat surface has been investigated numerically by using commercial CFD code Ansys CFX-V11. Turbulent flows are modeled using k-w turbulence model. Two-dimensional turbulent flow is considered. Calculations were conducted for a nozzle-to-plate spacing of eight slot nozzle width, at three Reynolds number(Re=4500, 6700 and 10,000) and four surface-to-velocity ratios i.e. 0, 0.25, 0.5 and 1. Results are compared against corresponding cases for heat transfer from a stationary plate. Local Nusselt number is calculated under constant wall temperature condition. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number, but decrease with the plate velocity.

  • PDF

A Numerical Study on Flow and Cooling Characteristics of Impinging Jets on a Moving Plate (이동하는 평판에서 충돌제트의 유동 및 냉각 특성에 대한 수치적 연구)

  • Jeon, Jin-Ho;Suh, Young-Ho;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2562-2567
    • /
    • 2008
  • Jet impingement on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The liquid-gas interface or free surface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The computations are made for multiple jets as well as a single jet to compare their flow characteristics. Also, the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

The effect of fuel/oxygen jet impingement on MILD combustion (연료/산소 Jet Impingement에 의한 MILD 연소)

  • Lee, Ho Yeon;Cha, Chun Loon;Lee, Pil Hyong;Hwang, Sang Soon;Lee, Sung Ho;Yoo, In
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.309-311
    • /
    • 2015
  • The MILD(Moderate or Intense Low-oxygen Dilution) combustion has been considered as one of the promising combustion technology for high thermal efficiency and low emissions. In this paper, the effect of fuel oxygen impingement on formation of MILD combustion was analyzed using numerical simulation. This investigation was simulated under the thermal intensity $0.04MW/m^3$ and equivalence ratio 0.91. The results show that the temperature distribution was become relatively uniform and the amount of CO emission was decreased as the increase of oxygen jet velocity and impinging angle.

  • PDF

The Effects of Combustion Products Dilution and Wall Temperature on the Ignition of Methane Fuel (메탄연료의 점화특성에 미치는 연소 생성물 희석 및 벽면온도의 영향)

  • Song, Keum-Mi;Oh, Chang-Bo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.9-15
    • /
    • 2012
  • The ignition characteristics in a confined axisymmetric coflow $CH_4$ jet were investigated numerically with the Fire Dynamics Simulator(FDS). The $CH_4$ fuel stream was diluted with main combustion product gases, such as $O_2$, $N_2$, CO, $CO_2$, and $H_2O$, and the mixed fuel stream was heated up to the sufficient temperature where a supplying fuel stream can be ignited. For the calculation of chemical reaction in the simulation, a 2-step global finite chemistry model was considered. Boundary condition for confined wall was optimized by investigating the effects of wall temperature on the ignition characteristics of fuel stream. In addition, the effects of composition of diluents in the fuel stream and fuel stream temperature on the ignition of fuel steam were investigated. The ignition characteristics of $CH_4$ stream with diluents were very sensitive to the wall temperature, composition of diluents in the fuel stream and fuel stream temperature.

A Study of Pt-Mg/Mesoporous Aluminosilicate Catalysts for Synthesis of Jet-fuel from n-Octadecane (n-Octadecane 으로부터 항공유 제조를 위한 Pt-Mg/mesoporous aluminosilicate 촉매 연구)

  • Jung, Euna;Kim, Chul-Ung;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.712-718
    • /
    • 2016
  • Platinum catalysts supported on the mesoporous material synthesized from Y zeolite were applied to synthesis of jet-fuel through n-octadecane hydroupgrading. The mesoporous aluminosolicate, $MMZ_{HY}$ was synthesized using Y zeolite as its framework source. The effect of the addition of Mg to $Pt/MMZ_{HY}$ catalyst for n-octadecane hydroupgrading was investigated. Catalyst characterization was performed with X-ray diffraction, $N_2$ adsorption, temperature-programmed reduction in hydrogen flow, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The high yield of jet-fuel over the $PtMg(2.0)/MMZ_{HY}$ can be attributed not only to the higher dispersion of Pt metal and higher reducibility, but also the higher amount of acid sites and higher strength of acid sites. The selectivity to iso-paraffin in the jet-fuel fraction could be reached above 80% over the optimized $PtMg/MMZ_{HY}$ catalyst.

Numerical simulation and investigation of jet impingement cooling heat transfer for the rotor blade

  • Peiravi, Amin;Bozorg, Mohsen Agha Seyyed Mirza;Mostofizadeh, Alireza
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.537-551
    • /
    • 2020
  • Investigation of leading edge impingement cooling for first stage rotor blades in an aero-engine turbine, its effect on rotor temperature and trailing edge wake loss have been undertaken in this study. The rotor is modeled with the nozzle for attaining a more accurate simulation. The rotor blade is hollowed in order for the coolant to move inside. Also, plenum with the 15 jet nozzles are placed in it. The plenum is fed by compressed fresh air at the rotor hub. Engine operational and real condition is exerted as boundary condition. Rotor is inspected in two states: in existence of cooling technique and non-cooling state. Three-dimensional compressible and steady solutions of RANS equations with SST K-ω turbulent model has been performed for this numerical simulation. The results show that leading edge is one of the most critical regions because of stagnation formation in those areas. Another high temperature region is rotor blade tip for existence of tip leakage in this area and jet impingement cooling can effectively cover these regions. The rotation impact of the jet velocity from hub to tip caused a tendency in coolant streamlines to move toward the rotor blade tip. In addition, by discharging used coolant air from the trailing edge and ejecting it to the turbines main flow by means of the slot in trailing edge, which could reduce the trailing edge wake loss and a total decrease in the blade cooling loss penalty.

Flame Formation of Ultrasonically-atomized Liquid-fuel Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통해 분사되는 초음파 무화 액체연료 화염의 형성)

  • Kim, Min Sung;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • An experimental study was performed for the combustion-field visualization of the burner which burns the liquid hydrocarbon fuel atomized by an ultrasonic oscillator. Configurations of the flame and temperature gradient were caught by both high-speed camera and thermo-graphic camera, and those images were analyzed in detail through a post-processing. In addition, the fuel consumption was measured using the balance during the combustion reaction. As a result, the consumption of atomized fuel increased with the increasing flow-rate of carrier-gas, but any correlation between the air/fuel ratio and carrier-gas flow-rate was not found at the low flow-rate condition. Also, the combustion-field grew and reaction-temperature rose due to the strengthening of combustion reaction with the increasing flow-rate of carrier-gas and power consumption of ultrasonic oscillator.

A Study on Combustion Characteristics of Synthetic Gas Air Lifted Premixed Flames with High Strain Rate in an Impinging Jet Combustion Field (합성가스의 충돌제트 연소장에서 고신장율 부상 예혼합화염 연소 특성 연구)

  • Kang, Ki-Joong;Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • This paper presents both experimental and numerical investigation of the combustion characteristics of stretched premixed lift-off flames using synthetic gas($H_2$/CO) in an impinging burner. We used "Spin code" for numerical analysis. An ICCD camera was employed to measure flame location and flame thickness. The impinging surface temperature was affected by local strain rate K, equivalence ratio, and composition ratio of fuel. In spite of the difference of boundary conditions in experimental and numerical results, the tendencies of surface temperatures were agreed. From result of this work, we also found that flame location and flame thickness directly related to surface temperature are greatly affected by local strain rate K.

MOLECULAR GAS AND RADIO JET INTERACTION: A CASE STUDY OF THE SEYFERT 2 AGN M51

  • MATSUSHITA, SATOKI;TRUNG, DINH-V;BOONE, FRDERIC;KRIPS, MELANIE;LIM, JEREMY;MULLER, SEBASTIEN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.439-442
    • /
    • 2015
  • We observed multiple CO transition lines and the HCN(1-0) line at ~ 1" (~ 34 pc) or higher resolution toward the Seyfert 2 nucleus of M51 using the IRAM Plateau de Bure Interferometer (PdBI) and the Submillimeter Array (SMA). All the images show very similar overall molecular gas distribution; there are two discrete clouds at the eastern and western sides of the nucleus, and the western cloud exhibits an elongated distribution and velocity gradient along the radio jet. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratios of about unity have been observed, especially along the radio jet, similar to those observed in shocked molecular gas in our Galaxy. This strongly indicates that the molecular gas along the jet is shocked, that the radio jet and the molecular gas are interacting, and the jet is entraining both diffuse (CO) and dense (HCN) molecular gas outwards from the circumnuclear region. This is the first clear imaging of the outflowing molecular gas entrained by the AGN jet, and showing the detailed physical status of outflowing molecular gas. Since a relatively high HCN(1-0)/CO(1-0) ratio has been observed in the high velocity wing of ultraluminous infrared galaxies, it can also be explained by a similar mechanism to those we describe here.

A Study on Applicability of Turbulence Models for Unsteady Turbulent Flow with Temperature Variation (온도변화를 수반한 비정상 난류유동장에 대한 난류모델의 적용성에 관한 연구)

  • 유근종;전원대
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • The suitable turbulence model is found to be required in the course of establishing a proper analysis methodology for thermal stripping phenomena which are shown in strong temperature variation area such as reactors and propulsion devices. Three different turbulence models of $\kappa$-$\varepsilon$ model, modified $\kappa$-$\varepsilon$ model, and full Reynolds stress(FRS) model, are applied to analyze unsteady turbulent flows with temperature variation. Three test cases are selected for verification. These are vertical jet flows with water and sodium, and parallel jet flow with sodium. Analysis yields the conclusion that 3-D computation with FRS betters others. However, modified modeling is required to improve its heat transfer characteristic analysis. Further analysis is performed to find momentum variation effects on temperature distribution. It is found that the momentum increase results increase of fluid mixing and magnitude of temperature variation.