• Title/Summary/Keyword: Java Robot

Search Result 35, Processing Time 0.031 seconds

Implementation of Remote Control System of Robot using Web Browser (웹 브라우져를 이용한 원거리 로봇 조작 시스템 구현)

  • 선상준;이동옥;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.288-291
    • /
    • 2000
  • In this paper we implement a robot system consisted of mobile tole robot to be controlled by client through web browser Newly Internet is connected to all network of the whole world. If client uses the network like this, client can control direction of a robot that is selected in free place. In this study, system is embodied in using robot that can move freely in plan place and cod camera that can grab robot image. System transmit image data of cod camera to java server that is placed in web server of internet that is used by client. Java server display incoming data in home page using java applet. Then web browser offer robot image to client and client send remote control signal to robot. Control signal is transmitted to robot by java server and robot receiving signal moves toward direction wanted by client.

  • PDF

The Design And Implementation of Robot Training Kit for Java Programming Learning (Java 프로그래밍 학습을 위한 로봇 트레이닝키트의 설계 및 구현)

  • Baek, Jeong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.97-107
    • /
    • 2013
  • The latest programming paradigm has been mostly geared toward object-oriented programming and visual programming based on the object-oriented programming. However, object-oriented programming has a more difficult and complicated concept compared with that of existing structural programming technique; thus it has been very difficult to educate students in the IT-related department. This study designed and implemented a Java robot training kit in which the Java virtual machine is built so that it may enhance the desire and motivation of students for learning the object-oriented programming using the training kit which is possible to attach various input and output devices and to control a robot. The developed Java robot training kit is able to communicate with a computer through the USB interface, and it also enables learners to manufacture a robot for education and to practice applied programming because there is a general purpose input and output port inside the kit, through which diverse input and output devices, DC motor, and servo motor can be operated. Accordingly, facing the IT fusion era, the wall between the academic circles and the major becomes lower and the need for introducing education about creative engineering object-oriented programming language is emerging. At this point, the Java robot training kit developed in this study is expected to make a great commitment in this regard.

The Design And Implementation of Educational Java Robot for Learning Motivation of Programmnig Language (프로그래밍언어 학습 동기유발을 위한 교육용 Java 로봇의 설계 및 구현)

  • Baek, Jeong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.191-194
    • /
    • 2011
  • 본 연구에서는 Atmel사의 AVR 마이크로프로세서에 적합하게 개발된 Java 바이트코드 인터프리터인 NanoVM을 자체 개발한 마이크로로봇에 이식하여 Java 언어 전용 로봇을 구현하였다. 따라서 마이크로프로세서의 구조와 회로를 모르는 학생들도 로봇을 프로그래밍하면서 Java 언어를 효율적으로 학습할 수 있다. 더욱이 최근 학생들의 프로그래밍언어 학습 능력이 떨어지면서 컴퓨터 관련학과의 프로그래밍언어 교육이 많은 어려움을 겪고 있다. 따라서 학생들의 프로그래밍언어 학습 동기를 부여하고 창의 공학적 프로그래밍언어 교육프로그램의 도입이 필요한 시점에서 본 연구에서 개발한 Java 로봇은 많은 기여를 할 것으로 기대된다.

  • PDF

An OS Platform Independent Architecture of Web-based Teleoperation for mobile robot

  • Ko, Deok-Hyeon;Lee, Soon-Geul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.346-349
    • /
    • 2004
  • The teleoperation system applies all of the industrial fields due to the development of the network infrastructure. It is one of the indispensable elements for controlling the robot at a remote sight and monitoring the limit or unknown environment. The common teleoperation robot system is what has the visual module to supply the network system and realistic UI to the existed robot system. Therefore, remarked that the fusion between modules and transmission of visual data the remarked the important element to improve the robot application in the various environments. Delay of development time by robot platform and noneffective communication among developers are also problem to approach. In this paper we propose the independent teleoperation system. The main application language is JAVA in this system, which is applied JAVA API like JNI and JMF to construct the effective teleoperation system. The system has the both side communication system between sever and client as a basic structure. The visual data that is attached the robot at a remote sight is captured by JMF API and then is transmitted to the web browser called client by RTR protocol. JNI is used to connect between JAVA and the lower part application (sensor fusion, motion control.) of the robot programmed by various Native languages. The proposed system is the application that can perform the elements, for instance transmission of visual data, the fusion of various native application modules and the effective network communication, with any platform.

  • PDF

Java based Platform for Educational Robots on AVR (교육용 AVR 로봇의 자바기반 플랫폼)

  • Lee, Lee-Sub;Kim, Seong-Hoon
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.17-29
    • /
    • 2009
  • C programming is a main programming for the Educational Robot Arm which is based on AVR ATmega128. The development environment is not integrated, so it is complex and difficult to study for middle or high school students who want to learn programming and control the educational robot arm. Furthermore, there is no debug and testing environment support. This paper presents a Java-based development platform for the educational robot arm. This platform includes: an up-to-date tiny Java Virtual Machine (NanoVM) for the educational robot arm; An Eclipse based Java integrated development environment as an Eclipse plug-in; a 3D simulator on the PCs to support testing and debugging programs without real robots. The Java programming environment makes development for educational robot arm easier for students.

  • PDF

Internal Teleoperation of an Autonomous Mobile Robot (인터넷을 이용한 자율운행로봇의 원격운용)

  • 박태현;강근택;이원창
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.45-45
    • /
    • 2000
  • This paper proposes a remote control system that combines computer network and an autonomous mobile robot. We control remotely an autonomous mobile robot with vision via the internet to guide it under unknown environments in the real time. The main feature of this system is that local operators need a World Wide Web browser and a computer connected to the internet communication network and so they can command the robot in a remote location through our Home Page. The hardware architecture of this system consists of an autonomous mobile robot, workstation, and local computers. The software architecture of this system includes the server part for communication between user and robot and the client part for the user interface and a robot control system. The server and client parts are developed using Java language which is suitable to internet application and supports multi-platform. Furthermore, this system offers an image compression method using motion JPEG concept which reduces large time delay that occurs in network during image transmission.

  • PDF

Remote Controlled Robot System using Real-Time Operating System (실시간 운영체제를 탑재한 원격 제어 로봇 시스템)

  • Lee, Tae-Hee;Cho, Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.689-695
    • /
    • 2004
  • This paper presents a robot system that combines computer network and an autonomous mobile robot where RTOS is installed. We propose a wireless communication protocol, and also implement it on the RTOS of the robot system. Main controller of the robot processes the control program as a task type in the real-time operating system. Peripheral devices are driven by the device driver functions with the dependency of the hardware. Because the client and server program was implemented to support the multi-platforms by Java SDK and Java JMF, it is easy to analyze programs, maintain system, and correct the errors in the system. End-user can control a robot with a vision showing remote sight over the Internet in real time, and the robot is moved keeping away from the obstacles by itself and command of the server received from end-user at the local client.

Pepper SDK Class-Based Guidelines for Developers (개발자들을 위한 Pepper SDK의 클래스 기반 가이드라인)

  • Kim, Jeyeon;Park, Geon;Ju, Hanbin;Kang, Sunkyoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.663-664
    • /
    • 2022
  • Pepper is a humanoid robot equipped with various sensors and joints. Therefore, it can be used in various ways depending on the purpose of the developer. The Pepper SDK is public and is used with the Android SDK. It supports Kotlin and Java languages, and although documents exist, they are inconvenient to use and difficult to aggregate. In this paper, we aim to provide convenience to those developers by describing guidelines based on some classes of Pepper SDK using Java language.

  • PDF

Development of an Internet-based Robot Education System

  • Hong, Soon-Hyuk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.616-621
    • /
    • 2003
  • Until now, many networked robots have been connected to the Internet for the various applications. With these networked robots, very long distance teleoperation can be possible through the Internet. However, the promising area of the Internet-based teleoperation may be distance learning, because of several reasons such as the unpredictable characteristics of the Internet. In robotics class, students learn many theories about robots, but it is hard to perform the actual experiments for all students due to the rack of the real robots and safety problems. Some classes may introduce the virtual robot simulator for students to program the virtual robot and upload their program to operate the real robot through the off-line programming method. However, the students may also visit the laboratory when they want to use the real robot for testing their program. In this paper, we developed an Internet-based robot education system. The developed system was composed of two parts, the robotics class materials and the web-based Java3d robot simulator. That is, this system can provide two services for distance learning to the students through the Internet. The robotics class materials can be provided to the student as the multimedia contents on the web page. As well, the web-based robot simulator as the real experiment tool can help the students get good understanding about certain subject. So, the students can learn the required robotics theories and perform the real experiments from their web browser when they want to study themselves at any time.

  • PDF

Teleoperation System of a Mobile Robot over the Internet (인터넷을 이용한 이동로봇의 원격 운용 시스템)

  • Park, Taehyun;Gang, Geun-Taek;Lee, Wonchang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.270-274
    • /
    • 2002
  • This paper presents a teleoperation system that combines computer network and an autonomous mobile robot. We control remotely an autonomous mobile robot with vision over the Internet to guide it under unknown environments in the real time. The main feature of this system is that local operators need a web browser and a computer connected to the communication network and so they can command the robot in a remote location through the home page. The hardware architecture of this system consists of an autonomous mobile robot, workstation, and local computers. The software architecture of this system includes the client part for the user interface and robot control as well as the server part for communication between users and robot. The server and client systems are developed using Java language which is suitable to internet application and supports multi-platform. Furthermore. this system offers an image compression method using JPEG concept which reduces large time delay that occurs in network during image transmission.