• Title/Summary/Keyword: Japanese anise

Search Result 5, Processing Time 0.019 seconds

Phenolic Compounds from Japanese Anise (Illicium anisatum L.) Leaves

  • Shinn, Seong-whan;Min, Hee-Jeong;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Japanese anise (Illicium anisatum L.) leaves were collected and ground after drying, then immersed with 50 % aqueous acetone for 3 days. After filtration, the extracts were fractionated with n-hexane, chloroform ($CHCl_3$), ethylacetate (EtOAc) and $H_2O$, and then freeze dried after concentration. A portion of EtOAc (3.12 g) and $H_2O$ (6.08 g) soluble fractions were chromatographed on a Sephadex LH-20 column with various aqueous MeOH solution to isolate the compounds. Compound 1 ((+)-catechin) was isolated from EtOAc soluble fraction. Compounds 2 (quercetin), 3 (quercitrin) and 4 (2''-O-rhamnosylvitexin) were isolated from $H_2O$ soluble fraction. For the first time, quercitrin (3) and 2''-O-rhamnosylvitexin (4) of the isolated compounds were obtained from the extracts of japanese anise leaves.

Phenolic Compounds from Japanese anise (Illicium anisatum L.) Twigs

  • Min, Hee-Jeong;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.456-462
    • /
    • 2017
  • Japanese anise (Illicium anisatum L.) twigs were collected and ground after drying, then immersed with 50% aqueous acetone for 3 days. After filtration, the extracts were fractionated with n-hexane, chloroform ($CHCl_3$), ethylacetate (EtOAc) and $H_2O$, and then freeze-dried after condensation. A portion of EtOAc soluble fraction (5.7 g) was chromatographed on a Sephadex LH-20 column with various aqueous $MeOH-H_2O$. Compound 2 and compound 3 were isolated from fraction 8 and 5, respectively. Compound 1 and compound 4 were isolated after rechromatography of fraction 7. The isolated compounds were elucidated as (+)-catechin (1), taxifolin (2), taxifolin-3-O-${\beta}$-D-(+)-xylopyranose (3) and quercitrin (4) by spectral and literature data, and by comparison with the authentic samples. Of the isolated compounds, taxifolin (2), taxifolin-3-O-${\beta}$-D-(+)-D-xylopyranose (3) and quercitrin (4) were isolated, for the first time, from the extracts of japanese anise twigs.

Biological Activities on Phenolic Compounds of Japanese anise (Illicium anisatum L) Extracts

  • Shinn, Seong-Whan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.120-125
    • /
    • 2019
  • In this paper, we have isolated six phenolic compounds, such as (+)-catechin (1), taxifolin (2), taxifolin-3-O-${\beta}$-D-(+)-xylose (3), quercetin (4), quercetin-3-O-${\alpha}$-L(+)-rhamnose (quercitrin) (5), apigenin-8-C-rhamnosyl-(1'''${\rightarrow}$2'')-glucoside (2''-O-rhamnosylvitexin) (6) from the EtOAc(Ethyl Acetate) and $H_2O$ soluble fractions of Japanese anise(Illicium anisatum L) leaves and twigs. Also, we have evaluated antioxidative and antiviral activity for each isolated compound. The antioxidative test was DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. According to the experimental results, all of the isolated compounds indicated the increased radical scavenging activities as the concentration increases and most of the isolated compounds indicated generally good antioxidative values compare to the controls, ascorbic acid and ${\alpha}$-tocopherol. In the antiviral activities, all of the isolated compounds had no potentials in rhinovirus 1B (HRV 1B). But in enterovirus 71 (EV 71) and Influenza virus A/PR/8 (Influenza PR8), only quercetin (4) indicated the good antiviral activity compare to the control. Based on the above results, we found that the phenolic compounds of Japanese anise may be applied for one of the natural biomass sources that can be used as an antioxidant and an antiviral substance.

Biolagical Activity on Extracts of Japanese Anise(Illicium Anisatum L.) Leaves and Twigs (붓순나무 잎과 가지의 추출물에 대한 생리활성 평가)

  • Shinn, Seong-Whan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.311-316
    • /
    • 2019
  • Japanese anise (Illicium anisatum L.) leaves and twigs were extracted with 50 % aqueous acetone three times. After filtration, the extracts were fractionated with n-hexane, chloroform, ethyl acetate and $H_2O$, and then freeze dried after condensation. Then antioxidation and antiviral activity were evaluated on each fractions. In the antioxidative activities, the results indicated high activity in the EtOAc soluble fraction of the leaves and the EtOAc and $H_2O$ soluble fractions of the twigs. It showed much higher antioxidative value compare to the controls, BHT and ${\alpha}$-tocopherol. In the antiviral activities, the all fractions were negative effects in HRV 1B and EV 71, but good in Influenza PR8. The activities of the crude extracts of the leaves and twigs showed more than 80% activity at the concentration of $10{\mu}g/mL$ and $50{\mu}g/mL$, respectively, and the activities of the EtOAc and $H_2O$ soluble fractions were close to 80%. Based on the above results, the extracts of Japanese anise may be applied for one of the natural biomass sources that can be used as an antioxidant and an antiviral substance.

Essential Oil Analysis of Illicium anistum L. Extracts

  • Min, Hee-Jeong;Kim, Chan-Soo;Hyun, Hwa-Ja;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.682-688
    • /
    • 2017
  • Fresh japanese anise (Illicium anisatum L.) tree leaves were collected and ground after drying. The essential oils of the leaves were analyzed by gas chromatography-mass spectrometry (GC-MS) using headspace (HS) and solid phase-microextra (SPME) methods. Volatile components of the leaves were identified 21 and 65 components in HS and SPME, respectively. The main components of the essential oils obtained by HS method were eucalyptol (36.7%), (+)-sabinene (15.61%), ${\delta}$-3-carene (6.87%), ${\alpha}$-pinene (6.07%), ${\gamma}$-terpinen (5.72%), ${\alpha}$-limonene (5.26%), ${\beta}$-myrcene (4.13%), ${\alpha}$-terpinene (4.04%) and ${\beta}$-pinene (3.73%). The other components were less than 3.5%. SPME method also showed that eucalyptol (17.88%) was main. The other were 5-allyl-1-methoxy-2 (13.29%), caryophyllene (6.09%), (+)-sabinene (5.60%), ${\alpha}$-ocimene (4.89%) and ${\beta}$-myrcene (3.73%), and the rest were less amounts than 3.5%. This work indicated that many more volatile components were isolated, comparing to the previous literature data and that SPME method was much more effective than HS method in the analysis of the volatile components.