• Title/Summary/Keyword: Janggun mine

Search Result 21, Processing Time 0.02 seconds

Pb Isotopic Composition of Yeonhwa and Janggun Pb-Zn Ore Deposits and Origin of Pb: Role of Precambrian Crustal Basement and Mesozoic Igneous Rocks (연화 및 장군 연-아연 광상의 Pb 동위원소 조성 및 Pb의 근원: 선캠브리아 기저 지각 및 중생대 화성암의 역할)

  • Park Kye-Hun;Chang Ho Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.141-148
    • /
    • 2005
  • Lead isotopic compositions are analyzed from the sulfide minerals of the Yeonhwa, Janggun and Uljin deposits and from host limestone, intrusives, and basement rocks to reveal the source of Pb in these deposits. In the $^{206}Pb/^{204}Pb$ vs $^{207}Pb/^{204}Pb$ plot, Galenas from the Yeonhwa mine display relatively well defined positive linear array, similar to the Precambrian basement rocks of the Korean peninsula. A galena sample from the Uljin mine, Janggun limestone and the basement rocks also follow the variation of Yeonhwa mine. However, ore minerals from the Janggun mine, having relatively low $^{206}Pb/^{204}Pb$ values, reveal offset from such trend toward lower $^{207}Pb/^{204}Pb$ values. Considering the fact that Mesozoic igneous rocks and ores within the Gyeongsang basin display considerably lower $^{207}Pb/^{204}Pb$ values than basement rocks of the Korean peninsula, the deviation of Janggun ore minerals can be interpreted as to reflect mixing between leads from old continental crustal materials and from Mesozoic igneous rocks with more mantle signature. The lead of the Yeonhwa and Uljin mine, following trend of Precambrian basement rather well, seems to have been originated mostly from such basement. However, regarding that they occupy low $^{207}Pb/^{204}Pb$ side of the variation trend of the basement, the possibility of having some leads derived from the Mesozoic igneous rocks cannot be excluded.

Mg-skarn Minerals from Magnetite Deposits of the Janggun Mine, Korea (장군광산(將軍鑛山)의 자철석광상(磁鐵石鑛床)에서 산출(産出)되는 Mg-스카른광물(鑛物))

  • Lee, Chan Hee;Song, Suckhwan;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 1996
  • The first Mg-skarn minerals are found from magnetite ore deposits of the Janggun mine, Korea. The skarn minerals are composed of mostly chondrodite, olivine, chlorite, serpentine, phlogophite, talc, apatite, magnesite, dolomite, siderite and trace amount of clinopyroxene, amphibole, garnet, wollastonite associated with magnetite, pyrrhotite and pyrite. The skarn zone is developed in the magnetite deposits at the contact of the Mg-rich Janggun Limestone Formation and the Chunyang granite. The chondrodites are columnar and radial shapes and some of them show twins. The chemical compositions of twinning-type chondrodites have high FeO (4.63 to 5.6 wt%), MnO (0.26 to 0.46 wt%) and low MgO (55.02 to 56.18 wt%) relative to the radial-type chondrodites. Twinning in chondrodite has been formed in close relation to substitution between Mg and Fe + Mn in humite solid solution. Temperature, $-logfo_2$ and $X_{CO2}$ during the skarn stage of magnetite deposits from the Janggun mine range from 395 to $430^{\circ}C$, from 30.5 to 31.2 atm and from 0.06 to 0.09, respectively.

  • PDF

Genesis of the Lead-Zinc-Silver and Iron Deposits of the Janggun Mine, as Related to Their Structural Features Structural Control and Wall Rock Alteration of Ore-Formation (장군광산(將軍鑛山)의 연(鉛)·아연(亞鉛)·은(銀) 및 철(鐵) 광상(鑛床)의 성인(成因)과 지질구조(地質構造)와의 관계(關係) - 광상(鑛床) 생성(生成)의 지질구조(地質構造) 규제(規制)와 모암(母岩)의 변질(變質) -)

  • Lee, Hyun Koo;Ko, Suck Jin;Naoya, Imai
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.161-181
    • /
    • 1990
  • The lead-zinc-silver-iron deposits from the Janggun mine are of hydrothermal-metasomatic origin, characterized by the marked hydrothermal alteration of the wallrocks, such as hydrothermal manganese enrichment of carbonate rocks, silicification, chloritization, sericitization, montmorillonitization and argillic alteration. The ore deposits have been emplaced within the Janggun Limestone of Cambro-Ordovician age at the immediate contacts with apophyses injected from the Chunyang Granite plutons of Late Jurrasic age. They have been structurally controlled by fractures in the carbonate rocks and the irregular intrusive contacts of granitic rocks, and are closely associated with hypogene manganese carbonate deposits. In the mine nine seperate orebodies are being mined. On the basis of the petrological study, hydrothermal alteration zone of this mine may be divided into the following four zones from wallrock to orebody. (I) Primary calcite and dolomite zone${\rightarrow}$(II) dolomitic limestone zone${\rightarrow}$(III) dolomitic zone${\rightarrow}$(IV) rhodochrosite zone${\rightarrow}$ orebody. There was not recongnized Mn and Fe elements in the primary calcite and dolomite zone. But, in the dolomitic limestone and dolomite zone, calcite and dolomite were subjected to weak hydrothermal manganese enrichment and the grade of the manganese enrichment increase oreward. By means of electron probe microanalysis, it was found that manganoan dolomite occured between primary dolomite grains, cross the cleavage of the primary dolomite and around the dolomite grains. Above these result supports that the Janggun manganese carbonate deposits are of hydrothermal metasomatic origin.

  • PDF

Mineralogical Characterization of Buserite from the Janggun and Dongnam Mines, Korea (장군광산과 동남광산에서 산출되는 부서라이트의 광물학적 특성)

  • Choi, Hun-Soo;Kim, Soo-Jin;Kim, Jeong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.259-266
    • /
    • 2005
  • X-ray diffraction (XRD), Electron microprobe analyses (EPMA) and heating experiments were used for mineralogical characterization of natural buserites collected from the Janggun and Dongnam mines. They are closely associated with $7-{\AA}$ phase (usually rancieite) in manganese oxide ores of the supergene oxidation zones of manganese carbonate deposits. Electron microprobe analyses give the average formula $(Ca_{0.78}Mg_{0.64}Mn^{2+}\;_{0.45})Mn^{4+}\;_{8.03}O_{18}\cdot13.2H_{2}O\;and\;(Zn_{0.81}Ca_{0.77}Mg_{0.26})Mn^{4+}\;_{8.00}O_{18}\cdot10.9H_{2}O$ for buserite from the Janggun and the Dongnam mine, respectively. The basal reflection of buserite from the Janggun mine shifts continuously from $9.86\;{\AA}\;at\;40^{\circ}C\;to\;7.60\;{\AA}\;at\;90^{\circ}C$, but the buserite from the Dongnam mine shows tendency of decreasing intensity in the $9.67^{\circ}C$ peak and of increasing intensity in the $7.53\;{\AA}$ peak in the range of $40\∼90^{\circ}C$, showing no gradual shifting of peaks.

Ore Minerals and Mineralization Conditions of Magnetite Deposits in the Janggun Mine, Korea (장군광산(將軍鑛山)의 자철석광상(磁鐵石鑛床)에서 산출(産出)되는 광석광물(鑛石鑛物)과 생성조건(生成條件))

  • Lee, Hyun Koo;Lee, Chan Hee;Song, Suckhwan
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Magnetite ores of the Janggun mine are embedded in dolomitic limestone of the Janggun Limestone Formation contacting with Chunyang granite, and are closely associated with skarn minerals. Mineralization of magnetite deposits can be divided into two stages as deep-seated skarn stage and shallow hydrothermal replacement stage. Mineralogies of skarn stage consist of magnetite, pyrrhotite and base-metal sulfides, and those of hydrothermal stage is base-metal sulfides, native bismuth, bismuthinite, tetrahedrite, boulangerite, bournonite and stannite. The FeS mole % in sphalerite and As atom % in arsenopyrite range from 22.47 to 26.30 and from 31.39 to 31.66 in skarn stage, and are from 17.54 to 32.54 and 28.87 to 30.70 in hydrothermal stage, respectively. Based on mineralization characteristics, mineral assemblages, chemical compositions and thermodynamic considerations, formation temperatures, sulfur fugacities ($-logf_2$), pH and oxygen fugacity ($-logfo_2$) estimated to be from 345 to $382^{\circ}C$, from 8.1 to 9.7atm, from 6.5 to 7.2 and from 30.5 to 31.2atm in the skarn stage, respectively, and temperature and $-logfs_2$ are from 245 to $315^{\circ}C$ and from 10.4 to 13.2atm in the hydrothermal stage.

  • PDF

Prograde Reaction Series in Metapelites around the Janggun Mine (장군광산 주변의 변성이질암에서의 누진변성반응 계열)

  • Ahn, Kun-Sang;Jeong, Hyun-Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.473-487
    • /
    • 1993
  • The Janggun mine area is occupied by the Proterzoic and the Paleozoic meta-pelites, which are intruded by the Jurassic Chunyang granite. The metamorphic terrain is divided into four zones of progressive metamorphism on the basis of mineral assemblages. The zones are chlorite zone, staurolite zone, andalusite zone, sillimanite zone ascending order. Boundary lines between the zones resemble outline of the Chunyang granite mass. Isograd reactions are chlorite+chloritoid+muscovite=staurolite+biotite+quartz+water, staurolite+chlorite+muscovite+quartz=andalusite+biotite+water, and staurolite+muscovite+quartz=andalusite+biotite+garnet+water between the chlorite zone and the staurolite zone, the staurolite zone and the andalusite zone, and the andalusite zone and the sillimanite zone, repectively. They are univariant reactions in KFMASH component system. Metamorphic conditions estimated from garnet-biotite geothermometers and phase equlibria are $530^{\circ}C$ and lower than 4 kb.

  • PDF

석회석을 활용한 광미와 폐석의 Cd, Cu, Pb 및 Zn의 제거

  • Ji Han-Gu;Jeong Myeong-Chae;Jeong Mun-Yeong;Choi Yeon-Wang;Lee Mun-Hyeon;Lee Jae-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.20-23
    • /
    • 2005
  • The objective of this study is to examine a stabilized efficiency of heavy metals including Cd, Cu, Pb and Zn using slaked lime. Tailings from the Janggun Pb-Zn mine, the second Yeonhwa Pb-Zn mine, the Jisi Au-Ag mine and the Sangdong W mine were sampled and measured heavy metal concentrations contents using AAS as various extraction methods. During 156 hours, column test were undertaken to evaluate the possibility of stabilization by slaked lime. The result shows that $Ca(OH)_2$ has a good efficiency in heavy metal stabilization, especially at the Jisi mine with stabilized efficiencies of 97%(Cd), 99%(Cu), 86%(Pb) and 99%(Zn), respectively.

  • PDF

Stannite from the Janggun Mine, Republic of Korea -Contributions to the Knowledge of Ore-Forming Minerals in the Janggun Lead-Zinc-Silver (3)- (한국(韓國) 장군광산(將軍鑛山)의 황석석(黃錫石)에 대(對)하여 -장군(將軍) 연(鉛)·아연(亞鉛)·은(銀) 광석광물(鑛石鑛物)의 지식(知識)에의 기여(寄與) (3)-)

  • Lee, Hyun Koo;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.121-130
    • /
    • 1986
  • In the Janggun mine, stannite occurs as anhedral grains, up to 500 micrometer in long dimension, closely associated with sphalerite, chalcopyrite, arsenopyrite, pyrrhotite, galena and rhodochrosite in the periphery of the South ore body. In reflected light, stannite is grayish yellow green in color and exhibits moderate bireflectance and strong anisotropism without any intenal reflections. Reflection; Rmax. =29.0, Rmin. =27.8 percent at a wavelength of 560nm, and VHN; 219~244kg/mm at a 50g load. The chemical composition on the average from 35 spot analyses by electron microprobe is, Cu 28.0, Fe 12.7, Zn 2.9, Mn 0.2, Sn 25.8, S 30.3, sum 99.9 (all in weight percent); the corresponding chemical formula as calculated on the basis of total atoms=8 is, Cu 1.88 Fe 0.97 Zn 0.19 Mn 0.02 Sn 0.93 S 4.01, which fulfills approximately the ideal formula of $Cu_2FeSnS_4$. The strongest reflections on the X-ray diffraction patterns are; $3.10{\AA}$ (10) (112), $2.72{\AA}$ (5) (020, 004), $1.922{\AA}$ (5) (024), $1.642{\AA}$ (3) (132), $1.244{\AA}$ (3) (143, 136, 235), $1.111{\AA}$(3) (244), $0.958{\AA}$ (1) (048, 422), the patterns are identical with those of literature. From the textural evidence of the microscopic observation, the mineral is considered to have been formed at the middle stage of hydrothermal lead-zinc-silver mineralization.

  • PDF

Carbon and Oxygen Isotope Studies of the Paleozoic Limestones from the Taebaegsan Region, South Korea (한국(韓國) 태백산지역(太白山地域)에 분포(分布)하는 고생대(古生代) 석회암(石灰岩)의 탄소(炭素)와 산소(酸素) 동위원소(同位元素)에 관(關)한 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 1980
  • ${\delta}^{13}C$ and ${\delta}^{18}O$ values were determined for the Paleozoic limestones (Great Linestone Series) from the Taebaegsan region and the age-unknown limestones (Janggun Formation) from the Janggun mine, Korea. Limestones of the Great Limestone Series exhibit a range of carbon isotopic composition from -4.5 +1.3‰ with a mean ${\delta}^{13}C$ value of -1.1‰, relative to the PDB standard, and of oxygen isotpic composition from +8.8 to +23.3‰ with a mean ${\delta}^{18}O$ value of +16.0‰, relative to the SMOW, falling into the normal marine limestone range according to Keith and Weber (1964), and Degens and Epstein(1964). Carbon isotopic composition of limestones of the Great Limestone Series becomes progressively lighter from Pungchon limestone of middle Cambrian age to mid-Ordovician Maggol limestone, possibly due to change in depositional environment in the Taebaegsan basin. Variation in isotopic composition of limestones from Hwajeol to Dumugal formation offers the possibility or deposition in shallow sea environment, in which fresh waters were added in several stages. Janggun limestone of unknown age may be corelated with the Paleozoic limestones of Great Limestone Series as infered from the istopic composition ranging from -2.8 to + 0.7‰ of ${\delta}^{13}C$ and +13.4 to +22.4‰ of ${\delta}^{18}O$.

  • PDF

Characteristics of Precipitates and Geochemistry of Mine and Leachate Water in Janggun Mine (장군광산 갱내수와 침출수의 지화학적 및 침전물의 특성 연구)

  • Kim, Jun Yeong;Jang, Yun Deug;Kim, Yeong Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.125-134
    • /
    • 2014
  • The Janggun mine (Longitude $E129^{\circ}$ 03' 40", Latitude $N36^{\circ}$ 51' 19") was once operated as an underground mine and recently significant amount of mine and leachate water has been discharged from the mine adits and tailing dumps. Mine and leachate waters are characterized by neutral to weakly basic pH values (6.81-9.59). Major cations and anions have concentrations between 6.70-129.80 mg/L of Mg, 289.29-661.02 mg/L of Ca, 4.74-14.38 mg/L of Mn and 1205.00-2448.69 mg/L of $SO{_4}^{2-}$. Brownish yellow precipitates that found in the stream bottom consist of poorly crystallized 2-line ferrihydrite ($Fe_2O_3{\cdot}0.5H_2O$. Scanning electron microscope (SEM) photographs show that brownish yellow precipitates consisted of micro-sized granular particles of about $0.1{\mu}m$ in diameter. Semi-quantitative energy dispersive spectrometry (EDS) analyses show that these samples contained mainly Fe with minor Mn, Ca, Si and As.