Pb Isotopic Composition of Yeonhwa and Janggun Pb-Zn Ore Deposits and Origin of Pb: Role of Precambrian Crustal Basement and Mesozoic Igneous Rocks

연화 및 장군 연-아연 광상의 Pb 동위원소 조성 및 Pb의 근원: 선캠브리아 기저 지각 및 중생대 화성암의 역할

  • Park Kye-Hun (Department of Environmental Geosciences, Pukyong National University) ;
  • Chang Ho Wan (School of Earth and Environmental Sciences, Seoul National University)
  • 박계헌 (부경대학교 환경지질과학과) ;
  • 장호완 (서울대학교 지구환경과학부)
  • Published : 2005.09.01

Abstract

Lead isotopic compositions are analyzed from the sulfide minerals of the Yeonhwa, Janggun and Uljin deposits and from host limestone, intrusives, and basement rocks to reveal the source of Pb in these deposits. In the $^{206}Pb/^{204}Pb$ vs $^{207}Pb/^{204}Pb$ plot, Galenas from the Yeonhwa mine display relatively well defined positive linear array, similar to the Precambrian basement rocks of the Korean peninsula. A galena sample from the Uljin mine, Janggun limestone and the basement rocks also follow the variation of Yeonhwa mine. However, ore minerals from the Janggun mine, having relatively low $^{206}Pb/^{204}Pb$ values, reveal offset from such trend toward lower $^{207}Pb/^{204}Pb$ values. Considering the fact that Mesozoic igneous rocks and ores within the Gyeongsang basin display considerably lower $^{207}Pb/^{204}Pb$ values than basement rocks of the Korean peninsula, the deviation of Janggun ore minerals can be interpreted as to reflect mixing between leads from old continental crustal materials and from Mesozoic igneous rocks with more mantle signature. The lead of the Yeonhwa and Uljin mine, following trend of Precambrian basement rather well, seems to have been originated mostly from such basement. However, regarding that they occupy low $^{207}Pb/^{204}Pb$ side of the variation trend of the basement, the possibility of having some leads derived from the Mesozoic igneous rocks cannot be excluded.

연화, 장군 및 울진 Pb-Zn 광상에서 산출되는 납의 근원을 규명하기 위하여 방연석과 황철석 등의 황화광물과 주변의 석회암, 관입암 및 기반암 등에 대해 납 동위원소 분석을 실시하였다. $^{206}Pb/^{204}Pb-^{207}Pb/^{204}Pb$ 그림에서 연화광산의 방연석들은 비교적 잘 정의되는 정(+)의 기울기를 갖는 직선 배열을 보이며, 한반도 선캠브리아 기저지각과 유사한 변화를 보인다. 울진광산의 방연석, 장군석회암 및 주변의 기저암체 역시 연화광산의 변화경향을 따른다. 그러나 연화광산에 비해 $^{206}Pb/^{204}Pb$값이 낮은 장군광산의 광석광물들은 연화광산의 변화경향으로부터 $^{207}Pb/^{204}Pb$ 값이 낮은 쪽으로 벗어난다. 경상분지 내에서 산출되는 중생대 화성암 및 광상들이 한반도의 기저암체들에 비해 훨씬 낮은 $^{207}Pb/^{204}Pb$ 값을 가지는 것을 참조할 때, 장군광산의 광석광물들이 보이는 변화는 기저암체의 오래된 지각물질로부터 용출된 납과 중생대 화성암들이 갖고 있던 보다 맨틀성분이 많이 포함된 납의 혼합을 반영하는 것으로 해석된다. 선캠브리아 기저지각의 변화경향을 비교적 잘 따르는 연화광산과 울진광산의 광석들에 포함된 납은 대부분 오래된 기저암체들로부터 유래한 것으로 보이나, 기저암체의 변화구역의 하단부에 위치하는 것을 고려할 때 중성대 화성암 기원의 납이 일정비율로 포함되었을 가능성을 배제할 수 없다.

Keywords

References

  1. 권성택, 이진한, 박계헌, 전은영, 1995, 단양 천동리 지역 옥천대/영남육괴의 접촉관계와 소위 화강암질 편마암의 pb-pb 연대. 암석학회지, 4, 144-152
  2. 김정환, 정창식, 손영철, 고희재, 1997, 평창지역의 지질과 선캠브리아 화강암질암의 스트론튬, 니오디미움 및 납 동위원소 조성. 지질학회지, 33, 27-35
  3. 박계헌, 1996, 무주지역 대리암의 pb-pb 연대. 암석학회지, 5, 84-88
  4. 박계헌, 김동연, 송영선, 2001, 지리산 지역 차노카이트와 함티탄철석 회장암질암의 Sm-Nd 광물연대 및 성인적 관계. 암석학회지, 2001
  5. 박계헌, 정창식, 이광식, 장호완, 1993, 태백산지역의 고기 화강암 및 화강편마암류에 대한 납 동위원소 연구. 지질학회지, 29, 387-395
  6. 박희인, 장호완, 진명식, 1998, 태백산지역내 광사의 생성연령. 광산지질, 21, 57-67
  7. 이현구, 고석진, N. Imai, 1990, 장군광산의 연, 아연, 은 및 철광상의 성인과 지질구조와의 관계 광상 생성의 지질구조 규제와 모암의 변질. 광산지질, 23, 161-181
  8. 정창식, 권성택, 김정민, 장병욱, 1998, 경상분지 북부에 분포하는 온정리 화강암에 대한 지역과 서남 일본 내대에 분포하는 백악기-제3기 화강암류와의 비교 고찰. 암석학회지, 7, 77-97
  9. 정창식, 길영우, 김정민, 정연중, 임창복, 2004, 영남육괴 북동부 죽변 지역 선캠브리아 기반암류의 지구화학적 특징. 지질학회지, 40, 481-499
  10. 한갑수, 1969, 연화광산의 지질광상. 광산지질, 2, 81-90
  11. 황인전, 1968, 삼한장군광산조사보문. 광산지질, 1, 934
  12. Andersen, T. and Grorud, H.-F., 1998, Age and lead isotope systematics of uranium-enriched cobalt mineralization in the Modum complex, South Norway implications for Precambrian crustal evolution in the SW part of the Baltic Shield. Precam. Res., 91, 419-432 https://doi.org/10.1016/S0301-9268(98)00061-8
  13. Chang, B.U., 1997, A study on the lead isotopic compositions of ore deposits and igneous rocks in the Gyeongsang Basin, Southeast Korea. PhD Thesis, Seoul National University, 100 p
  14. Chang, B.U., Chang, H.W. and Cheong, C.S., 1995, Lead isotope study on lead-zinc ore deposits in the eastern and southern parts of the Gyeongsang Basin. Econ. Environ. Geol., 28, 19-24
  15. Chang, H.W., Turek, A. and Kim, C.-B., 2003, U-Pb zircon geochronology and Sm-Nd-Pb isotopic constraints for Precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea. Geochem. J., 37, 471-491 https://doi.org/10.2343/geochemj.37.471
  16. Chang, H.W., Cheong, C.S., Park, H.I. and Chang, B.U., 1995, Lead isotopic study on the Dongnam Fe-Mo starn deposit. Econ. Environ. Geol., 28, 25-31
  17. Cheong, C.-S., Kwon, S.-T. and Park, K.-H., 2000, Pb and Nd isotopic constraints on Paleoproterozoic crustal evolution of the northeastern Yeongnam massif, South Korea. Precam. Res., 102, 207-220 https://doi.org/10.1016/S0301-9268(00)00066-8
  18. Cheong, C.-S., Kwon, S.-T. and Sagon, H., 2002, Geochemical and Sr-Nd-Pb isotopic investigation of Triassic granitoids and basement rocks in the northern Gyeongsang Basin, Korea: implications for the young basement in the East Asian continental margin. The Island Arc, 11, 25-44 https://doi.org/10.1046/j.1440-1738.2002.00356.x
  19. Doe, B. R. and Stacey, J. S., 1974, The application of lead isotopes to the problems of ore genesis and ore prospect evaluation: A review. Econ. Geol., 69, 757-776 https://doi.org/10.2113/gsecongeo.69.6.757
  20. Doe, B. R. and Zartman, Z. E., 1979, Plumbotectonics, The Phanerozonic, in Barnes, H. L., ed., Geochemistry of hydrothermal ore deposits. John Wiley, New York, 22-70
  21. Frei, R., Nagler, Th.F., Schonberg, R. and Kramers, J.D., 1998, Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity. Geochim. Cosmochim. Acta, 62, 1925-1936 https://doi.org/10.1016/S0016-7037(98)00111-2
  22. Gokce, A. and Bozkaya, G., 2005, Lead and sulfur isotope evidence for the origin of Inler Yaylasi lead-zinc deposits, Northern Turkey. J. Asian Earth Sci., in press
  23. Gulson, B. L., 1986, Lead isotopes in mineral exploation. Elsevier. New York, 245p
  24. Kim, J. and Cho, M., 2003, Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: implication for Paleoproterozoic crustal evolution. Precam. Res., 122, 235-251 https://doi.org/10.1016/S0301-9268(02)00213-9
  25. Mabuchi, H., 1985, The lead isotope systematics in Asia and near East. Grant Report to the Ministry of Education, Science, and Culture, Japan, No. 58540375-59549377, 19p (in Japanese)
  26. Nie, F.-J., Jiang, S.-H., Su, X.-X. and Wang, X.-L., 2002, Geological features and origin of gold deposits occurring in the Baotou-Bayan Obo district, south-central Inner Mongolia, People's Republic of China. Ore Geology Reviews, 20, 139-169 https://doi.org/10.1016/S0169-1368(02)00069-0
  27. Remus, M.V.D., Hartmann, L.A., McNaughton, N.J., Groves, D.I. and Fletcher, I.R., 2000, The link between hydrothermal epigenetic copper mineralization and the Cacapava Granite of the Brasiliano Cycle in southern Brazil. Jour. South American Earth Sci., 13, 191-216 https://doi.org/10.1016/S0895-9811(00)00017-1
  28. Rubinstein, N.A., Ostera, H.A., Mallimacci, H. and Carpio, F., 2004, Lead isotopes from Gondwana polymetallic ore vein deposits, San Rafael Massif, Argentina. J. South American Earth Sci., 16, 579-586
  29. Sagong, H. and Kwon, S.-T., 1998, Pb-Pb age and uplift history of the Busan gneiss comples in the Okcheon Belt, Korea: a comparison with the Bagdalryeong gneiss comples in the Kyeonki Massif. Geosciences J., 2, 99-106 https://doi.org/10.1007/BF02910488
  30. Sagong, H., Cheong, C.-S. and Kwon, S.-T., 2003, Paleoproterozoic orogeny in South Korea: evidence from Sm- Nd and Pb step-leaching garnet ages of Precambrian basement rocks. Precam. Res., 122, 275-295 https://doi.org/10.1016/S0301-9268(02)00215-2
  31. Sasaki, A., 1987, Isotope systematics of ore leads from the Korean Peninsula and Japanese Islands. Mininig Geology, 37, 223-226 (in Japanese)
  32. So, C.-S., S.-T. Yun, S.-G. Choi, Y.-K. Koj and S.-J. Chi, 1991, Cretaceous epithermal Au-Ag mineralization in the Muju-Yeongam District(Jeonju minefalized area), Republic of Korea: galena-lead and stable isotope studies. J. Geol. Soc. Korea, 27, 569-586
  33. Tilton, G. R., 1983, Evolution of depleted mantle: the lead perspestive. Geochim. Cosmochim. Acta, 47, 1191-1197 https://doi.org/10.1016/0016-7037(83)90061-3
  34. Turek, A. and Kim, C.-B., 1996, U-Pb zircon ages for Precambrian rocks in southwestern Ryeongnam and southwestern Gyeonggi massifs, Korea. Geochem. J., 30, 231-249 https://doi.org/10.2343/geochemj.30.231
  35. Yun, S., 1979, Geology and skarn ore mineralization of the Yeonwha-Ulchin zinc- lead minining district, southeastern Taebaegsan region, Korea. Ph.D. thesis, Stanford University, 306p
  36. Zartman, R. E and Haines, S.M., 1988, The plumbotectonic model for Pb isotopic systemics among major terrestrial reserial reservoirs- a case for bi-directional transport. Geochim. Cosmochim. Acta, 1327-1339
  37. Zhang, L., Shen, Y. and Ji, J., 2003, Characteristics and genesis of Kanggur gold deposit in the eastern Tianshan mountains, NW China: evidence from geology, isotope distribution and chronology. Ore Geology Reviews, 23, 71-90 https://doi.org/10.1016/S0169-1368(03)00016-7
  38. Zindler, A. and Hart, S.R., 1986, Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14, 493-571 https://doi.org/10.1146/annurev.ea.14.050186.002425