• Title/Summary/Keyword: Jamming Antenna

Search Result 76, Processing Time 0.033 seconds

A Study on Characteristics of Null Pattern Synthesis Algorithm Using Quantum-inspired Evolutionary Algorithm (양자화 진화알고리즘을 적용한 널 패턴합성 알고리즘의 특성 연구)

  • Seo, Jongwoo;Park, Dongchul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.492-499
    • /
    • 2016
  • Null pattern synthesis method using the Quantum-inspired Evolutionary Algorithm(QEA) is described in this study. A $12{\times}12$ planar array antenna is considered and each element of the array antenna is controlled by 6-bit phase shifter. The maximum number of iteration of 500 is used in simulation and the rotation angle for updating Q-bit individuals is determined to make the individual converge to the best solution and is summarized in a look-up table. In this study we showed that QEA can satisfactorily synthesize the null pattern using smaller number of individuals compared with the conventional Genetic Algorithm.

A Research on the Beam Pattern Control of Adaptive Array Antenna for GPS Receiver (위성항법수신기용 적응배열 안테나의 빔 형상 조정에 관한 연구)

  • Ahn, Seung-Gwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.96-102
    • /
    • 2006
  • In this paper, the design, construction and basic characteristics of an electronically adaptive array antenna for the GPS receiver is described. The susceptibility of the GPS signals to the interference is of concern to the GPS user community. Because of the low received power of the GPS signals, outages can easily occur due to the unintentional interference and the easily obtainable low cost GPS jammer denying access to the GPS signals. We propose a technique of the adaptive array antenna that detects the GPS interference sources and controls the null beam pattern only toward the jamming sources to acquire GPS navigation data after acquisition and tracking of the GPS signals.

The Performance Analysis of Beamforming Algorithm for Anti-Spoofing

  • Choi, Yun Sub;Lee, Sun Yong;Park, Chansik;Ahn, Byoung Sun;Won, Hyun Hee;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.131-136
    • /
    • 2016
  • The present paper shows that beamforming algorithm such as Minimum Variance Distortionless Response (MVDR) based on array antenna signal processing can have not only anti-jamming but also anti-spoofing characteristics. A beam pattern due to the beamforming algorithm strengthens received signal power as it is formed in the incident direction of desired signal. During the process, the effect of unnecessary signals such as spoofing signals can be reduced because the beam pattern reduces received signal power in the incident directions excluding the beam pattern-directed direction. In order to analyze the anti-spoofing effect due to the beamforming algorithm, a software-based simulation environment was configured. An arbitrary error was applied between incident direction of Global Positioning System (GPS) satellite signal and steering vector direction of the beamforming algorithm to analyze the received signal power and required conditions were provided to see the anti-spoofing effect due to the beamforming algorithm. The used antenna was 7-element planar circular array and beam patterns were formed through the MVDR algorithm.

Performance Analysis of Beam Steering Algorithm According to the Signal Separation (신호 이격도에 따른 빔 제어 알고리즘 성능 분석)

  • Yun, Seonhui;Oh, Jongchan;Kim, Jun O;Nam, Juhun;Choi, Sangwook;Ahn, Jaemin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1023-1030
    • /
    • 2014
  • Beam steering algorithms using array antenna are mainly used in such a manner as anti-jamming method. However, the performance is changed according to the position of signals despite the same number of signals and the same received power. In this paper, we analyzed the effect of the position relationship of the signals on the performance of the beam steering algorithms. Therefore, we defined 'signal separation' as the minimum angle of the interference signals and the desired signal, and analysed the relationship between the C/N0 performance of beam steering algorithms as LCMV/PM and the signal separation. For simulation, we set many GPS signals and jamming signals compared to the degrees of freedom. And changed the position and the height of the receiver in order to obtain various signal separation angles. In addition, we examined the effects of signal separation and JSR on the anti-jamming performance by applying the loss factors of the received power. Through the research, there is a tendency that the performance of beam steering algorithms is increased with the increase of the signal separation, and signal separation is more severely affecting on the anti-jamming performance compared to the number of signals and JSR.

Design of a Compact Antenna Array for Satellite Navigation System Using Hybrid Matching Network

  • Lee, Juneseok;Cho, Jeahoon;Ha, Sang-Gyu;Choo, Hosung;Jung, Kyung-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2045-2049
    • /
    • 2018
  • An antenna arrays for a satellite navigation systems require more antenna elements to mitigate multiple jamming signals. In order to maintain the small array size while increasing the number of antenna elements, miniaturization technique is essential for antenna design. In this work, an electrically small circular microstrip patch antenna with a 3 dB hybrid coupler is designed as an element antenna, where the 3 dB hybrid coupler can yield the circularly polarized radiation characteristic. The miniaturized element antenna typically has too large capacitance in GPS L1 and GLONASS G1 bands, making it difficult to match with a single stand-alone non-Foster matching circuit (NFMC) in a stable state. Therefore, we propose a new matching technique, referred to as the hybrid matching method, which consists of a NFMC and a passive circuit. This passive tuning circuit manages reactance of antenna elements at an appropriate capacitance without a pole in the operating frequency range. The antenna array is fabricated, and the measured results show a reflection coefficient of less than -10 dB and an isolation of greater than 50 dB. In addition, peak gain of the proposed antenna is increased by 22.3 dB compared to the antenna without the hybrid matching network.

A GPS Receiver Structure for Multi-beamforming (다중 빔 형성을 위한 GPS 수신기 구조)

  • Lee, Geon-Woo;Lim, Deok-Won;Lee, Chang-Won;Park, Chan-Sik;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.182-190
    • /
    • 2009
  • GPS receivers can be disrupted by intentional or unintentional jamming, then it is unable to receive GPS signals and it is impossible to get the correct navigation results. Anti-jamming schemes using array antennas are being studied well due to high performance of those, and the efforts to apply them to GPS receiver are also being done. A GPS receiver structure for a multiple beam-forming scheme among those schemes has been proposed in this paper, and the performance is also compared with that using a general GPS receiver structure. For a general GPS receiver structure, each satellite signal which is formed by a beam-forming scheme is summed to be processed in a part of digital signal processing. For a proposed GPS receiver structure, however, each satellite signal is respectively processed by a designated channel in a part of digital signal processing. Finally, it is confirmed that the proposed GPS receiver structure is superior to a general GPS receiver structure in a point of the carrier to noise power ratio and the navigation accuracy using a software platform.

A New Multi-Beam MVDR Technique for Removing Interference Signals in Array Antenna Based GPS Receivers (GPS 수신기에서 간섭신호 제거를 위한 배열 안테나 기반 다중 빔 MVDR 기법)

  • Jeong, Eui-Rim;Won, Hyun-Hee;Yang, Gi-Jung;Ahn, Byoung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.491-498
    • /
    • 2017
  • GPS (global positioning system) is a popular system that provides location information by measuring arrival time difference at the receiver between several GPS satellite signals. GPS is widely used in commercial area as well as military systems. Reliable GPS signal reception is more important in the military applications such as guided missiles. However, since the carrier frequencies of the GPS signals are well known and the received power is extremely low, the GPS systems are vulnerable to intentional jamming attacks. To remove jammers while maintaining GPS signals at the received signals, a popular technique is an adaptive beam steering method based on array antenna. Among adaptive beam steering techniques, this paper considers MVDR (minimum variance distortionless response) algorithm, and proposes a new adaptive technique that preserves the received signals at desired directions, but removes the unknown jamming signals adaptively. The performance of the proposed method is verified through computer simulation.

A Study on UAV Tracking Method with Anti-Jamming Function for Forest Resource Management (산림자원 관리를 위한 항 재밍 기능을 보유한 무인항공기국 추적방법에 관한 연구)

  • Jin-Woo Jung;Yong-Gyu Shin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1245-1258
    • /
    • 2023
  • To efficiently manage forest resources, it is essential to deploy multiple unmanned aerial vehicles equipped with various sensors simultaneously. Consequently, the ground control station antenna should not only maintain continuous tracking of the target station but also minimize the impact of radio interference on other unmanned aerial vehicle stations. In this paper, we presented beam forming techniques based on the VPR algorithm within a ground control station constructed using a phased array antenna system. Through simulation experiments in diverse unmanned aerial vehicle operating environments, it was demonstrated that the presented method enables not only the continuous tracking of operational unmanned aerial vehicles but also the suppression of radio interference by establishing a continuous pattern null for multiple operational radio interference sources.

Implementation of ZUPT on RPA Navigation System for GNSS Denied Ground Test

  • Shin, Hyeoncheol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.125-129
    • /
    • 2020
  • In this paper, Zero velocity UPdaTe (ZUPT) is implemented on the navigation system of Remotely Piloted Aircraft for GNSS denied environment. RPA's navigation system suffers from lack or loss of satellite signal while maintenance or ground test inside a hangar. Although some of the hangars install GPS repeaters for indoor tests, the anti-jamming equipment with array antenna blocks the repeater signal regarding them as hostile jamming signal. With ZUPT, an aircraft navigation system can be tested free from the divergence of navigation solution without line-of-sight satellites. The designed ZUPT aided centralized Kalman Filter is implemented on the Embedded GPS&INS and simulated with Captive Flight Test data. The simulation result shows stable navigation solution without GNSS updates.

Development of a GNSS Signal Generator Considering Reception Environment of a Vehicle (이동체의 수신 환경을 고려한 GNSS 신호 생성기 개발)

  • Cho, Sung Lyong;Park, Chansik;Hwang, Sang Wook;Choi, Yun Sub;Lee, Ju Hyun;Lee, Sang Jeong;Pack, Jeong-Ki;Lee, Dong-Kook;Jee, Gyu-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.811-820
    • /
    • 2012
  • GNSS signal is vulnerable to jamming signal because of well-known signal structure and weak signal power. For these reasons, the need for analysis of jamming effects and anti-jamming techniques of is increasing. In this paper, a GNSS signal generator is designed which includes a radio wave propagation model for six kind of tactical environments and a body masking model for the reception environment of a vehicle. The radio wave propagation model for downtown, rural, forest, coastline, waste land and snow or ice area is designed using two-ray model. The body masking model is designed the effect which the antenna is affected by the reception environment of a vehicle and radiation pattern from a user configuration. The performance of generated signals from the GNSS signal generator considering reception environment of a vehicle is evaluated by a commercial GPS L1 receiver(NordNav) in normal and jamming environment. Also, the generated GNSS signal is compared to a commercial GPS L1 H/W based RF signal generator(STR4500). The results show that the designed GNSS signal generator in a normal environment compared to the same navigation performance. In jamming environment, it is shown that the body masking effect and GNSS signal acquisition and tracking loss in compliance with the jamming signal are precisely working in the reception environment of a vehicle.