• Title/Summary/Keyword: JPE

Search Result 1,437, Processing Time 0.024 seconds

An Active Output Filter with a Novel Control Strategy for Passive Output Filter Reduction

  • Choi, Kyusik;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1036-1045
    • /
    • 2016
  • This paper presents a novel control strategy for passive output filter reduction using an active output filter. The proposed method achieves the dual-function of regulating the output voltage ripple and output voltage variation during load transients. The novel control strategy allows traditional simple voltage controllers to be used, without requiring the expensive current sensors and complex controllers used in conventional approaches. The proposed method is verified with results from a 125-W forward converter.

Analysis of an LCLC Resonant Converter with a Capacitive Output Filter

  • Jafarboland, Mehrdad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.662-668
    • /
    • 2011
  • This paper presents an analysis of a 4th order LCLC resonant converter with a capacitive output filter using the state-space approach. The analysis of the converter shows that there are four intervals in a half period. In each interval, the state-space equations are obtained. Due to the soft switching of the converter, an exact equation for the Zero Voltage Switching (ZVS) time and the maximum dead time of the inverter switches are presented. The simulation and experimental results obtained from a 10kv, 370w prototype confirm the validity of the theoretical analysis.

PMSM Position Control with a SUI PID Controller

  • Abu El-Sebah, Mohamed I.
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.171-175
    • /
    • 2010
  • This paper introduces the application of a SUI PID controller for permanent magnet (PM) drive systems. The drive system model is developed via FO control. Simulation of the system is carried out to predict the performance at no load and under load. The results and comparisons indicate that application of a SUI PID controller is effective for sensorless PM drive systems.

Design of a Discrete Flux Observer by the Power Series Approximation

  • Kim, Kyung-Seo;Kim, Il-Han
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.304-310
    • /
    • 2011
  • The power series approximation method is proposed for real time implementations of a discrete flux observer. The proposed method improves the performance of the discrete flux observer in the case of a low sampling rate and high speed range, where the simple discrete flux observer converted by the Euler method cannot estimate the actual flux precisely. The performance of discrete flux observers with different orders of approximation is compared to find out the proper order of approximation. The validity of the proposed method is verified through simulation and experiment.

Coupled Inductor Design Method for 2-Phase Interleaved Boost Converters

  • Liang, Dong;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.344-352
    • /
    • 2019
  • To achieve high efficiency and reliability, multiphase interleaved converters with coupled inductors have been widely applied. In this paper, a coupled inductor design method for 2-phase interleaved boost converters is presented. A new area product equation is derived to select the proper core size. The wire size, number of turns and air gap length are also determined by using the proposed coupled inductor design method. Finally, the validity of the proposed coupled inductor design method is confirmed by simulation and experimental results obtained from a design example.

New Active Damping Strategy for LCL-Filter-Based Grid-Connected Inverters with Harmonics Compensation

  • Hu, Guozhen;Chen, Changsong;Shanxu, Duan
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.287-295
    • /
    • 2013
  • The use of LCL filters in pulse width modulation voltage source converters is a standard solution for providing proper attenuation of high-order grid-current harmonics. However, these filters can cause the undesired effect of resonance. This paper proposes an active damping strategy with harmonics compensation. It can alleviate the harmonics around the resonance frequency caused by the LCL filters. The proposed strategy is attractive since it is simple, does not depend on grid parameters and does not increase the number of sensors. Simulation and experimental results verify the effectiveness of the proposed active damping strategy.

Operation Analysis of a Communication-Based DC Micro-Grid Using a Hardware Simulator

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.313-321
    • /
    • 2013
  • This paper describes the operation analysis results of a communication-based DC micro-grid using a hardware simulator developed in the lab. The developed hardware simulator is composed of distributed generation devices such as wind power, photovoltaic power and fuel cells, and energy storage devices such as super-capacitors and batteries. Whole system monitoring and control was implemented using a personal computer. The power management scheme was implemented in a main controller based on a TMS320F28335 chip. The main controller is connected with the local controller in each of the distributed generator and energy storage devices through the communication link based on a CAN or an IEC61850. The operation analysis results using the developed hardware simulator confirm the ability of the DC micro-grid to supply the electric power to end users.

Single-Phase Current Source Induction Heater with Improved Efficiency and Package Size

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.322-328
    • /
    • 2013
  • This paper presents a modified Current Source Parallel Resonant Push-pull Inverter (CSPRPI) for single phase induction heating applications. One of the most important problems associated with current source parallel resonant inverters is achieving ZVS in transient intervals. This paper shows that a CSPRPI with the integral cycle control method has dynamic ZVS. According to this method, it is the Phase Locked Loop (PLL) circuit that tracks the switching frequency. The advantages of this technique are a higher efficiency, a smaller package size and a low EMI in comparison with similar topologies. Additionally, the proposed modification results in a low THD of the ac-line current. It has been measured as less than %2. To show the validity of the proposed method, a laboratory prototype is implemented with an operating frequency of 80 kHz and an output power of 400 W. The experimental results confirm the validity of the proposed single phase induction heating system.

Implementation of a ZVS Three-Level Converter with Series-Connected Transformers

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.177-185
    • /
    • 2013
  • This paper studies a soft switching DC/DC converter to achieve zero voltage switching (ZVS) for all switches under a wide range of load condition and input voltage. Two three-level PWM circuits with the same power switches are adopted to reduce the voltage stress of MOSFETs at $V_{in}/2$ and achieve load current sharing. Thus, the current stress and power rating of power semiconductors at the secondary side are reduced. The series-connected transformers are adopted in each three-level circuit. Each transformer can be operated as an inductor to smooth the output current or a transformer to achieve the electric isolation and power transfer from the input side to the output side. Therefore, no output inductor is needed at the secondary side. Two center-tapped rectifiers connected in parallel are used at the secondary side to achieve load current sharing. Due to the resonant behavior by the resonant inductance and resonant capacitance at the transition interval, all switches are turned on at ZVS. Experiments based on a 1kW prototype are provided to verify the performance of proposed converter.

High Efficiency Step-Down Flyback Converter Using Coaxial Cable Coupled-Inductor

  • Kim, Do-Hyun;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.214-222
    • /
    • 2013
  • This paper proposes a high efficiency step-down flyback converter using a coaxial-cable coupled-inductor which has a higher primary-secondary flux linkage than sandwich winding transformers. The structure of the two-winding coaxial cable transformer is described, and the coupling coefficient of the coaxial cable transformer and that of a sandwich winding transformer are compared. A circuit model of the proposed transformer is also obtained from the frequency-response curves of the secondary short-circuit and of the secondary open-circuit. Finally, the performance of the proposed transformer is validated by the experimental results from a 35W single-output flyback converter prototype. In addition, the proposed two-winding coaxial transformer is extended to a multiple winding coaxial application. For the performance evaluation of the extended version, 35W multi-output hardware prototype of the DC-DC flyback converter was tested.