• Title/Summary/Keyword: JNK2

Search Result 632, Processing Time 0.028 seconds

Molecular cloning and characterization of novel human JNK2 (MAPK9) transcript variants that show different stimulation activities on AP-1

  • Wang, Pingzhang;Xiong, Ying;Ma, Chuan;Shi, Taiping;Ma, Dalong
    • BMB Reports
    • /
    • v.43 no.11
    • /
    • pp.738-743
    • /
    • 2010
  • The c-Jun $NH_2$-terminal kinase (JNK) signaling pathway participates in many physiological functions. In the current study we reported the cloning and characterization of five novel JNK2 transcript variants, which were designated as $JNK2\alpha3$, $JNK2\alpha4$, $JNK2\beta3$, $JNK2\gamma1$ and $JNK2\gamma2$, respectively. Among them, $JNK2\alpha4$ and $JNK2\gamma2$ are potential non-coding RNA because they contain pre-mature stop codons. Both $JNK2\alpha3$ and $JNK2\beta3$ contain an intact kinase domain, and both encode a protein product of 46 kDa, the same as those of $JNK2\alpha1$ and $JNK2\beta1$. $JNK2\gamma1$ contains a disrupted kinase domain and it showed a disable function. When over-expressed in mammalian cells, $JNK2\alpha3$ showed higher activity on AP-1 than that of $JNK2\beta3$ and $JNK2\gamma1$. Furthermore, $JNK2\alpha3$ and $JNK2\beta3$ showed different levels of substrate phosphorylation, although they both could promote the proliferation of 293T cells. Our results further demonstrate that JNK2 isoforms preferentially target different substrates and may regulate the expression of various target genes.

Phytocompounds from T. conoides identified for targeting JNK2 protein in breast cancer

  • Sruthy, Sathish;Thirumurthy, Madhavan
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.153-161
    • /
    • 2022
  • c-Jun N-terminal kinases (JNKs) are members of MAPK family. Many genes can relay signals that promote inflammation, cell proliferation, or cell death which causes several diseases have been associated to mutations in the JNK gene family. The JNK2 gene is significantly more important in cancer development than the JNK1 and JNK3 genes. There are several different ways in which JNK2 contributes to breast cancer, and one of these is through its role in cell migration. As a result, this study's primary objective was to employ computational strategies to identify promising leads that potentially target the JNK2 protein in a strategy to alleviate breast cancer. We have derived these anticancer compounds from marine brown seaweed called Turbinaria conoides. We have identified compounds Ethane, 1, 1-diethoxy- and Butane, 2-ethoxy as promising anti-cancer drugs by molecular docking, DFT, and ADME study.

c-Jun N-Terminal Kinase Signaling Inhibitors Under Development

  • Han, Sun-Young
    • Toxicological Research
    • /
    • v.24 no.2
    • /
    • pp.93-100
    • /
    • 2008
  • Targeting protein kinases has been active area in drug discovery. The c-Jun N-terminal kinases(JNKs) have also been target for development of novel therapy in various diseases, since the roles of JNK signaling in pathological conditions were revealed in studies using jnk-deficient mice. Small molecule inhibitors and peptide inhibitors are identified for therapeutic intervention of JNK signaling pathway. SP-600125, an anthrapyrazole small molecule inhibitor for JNK with high potency and selectivity has been widely used for dissecting JNK signaling pathway. CC-401 is the first JNK inhibitor that went into clinical trial for inflammation and leukemia. Inhibitor for mixed lineage kinase (MLK), CEP-1347 also negatively regulates JNK signaling, and tried for potential use in Parkinson's disease. Cell-permeable peptide inhibitor D-JNKI-1 is being developed for the treatment of hearing loss. The current status of these JNK inhibitors and safety issue is discussed in the minireview.

Hologram Quantitative Structure Activity Relationship Analysis of JNK Antagonists

  • Kulkarni, Seema A.;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 2015
  • c-Jun N-terminal kinase-3 (JNK3) is a member of the mitogen-activated protein kinase family (MAPK), and plays an important role in neurological disorders. Therefore, identification of selective JNK3 inhibitor may contribute towards neuroprotection therapies. In this work, we performed hologram quantitative structure-activity relationship (HQSAR) on a series of thiophene trisubstituted derivatives. The best predictions were obtained for HQSAR model with $q^2=0.628$ and $r^2=0.986$. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. HQSAR result showed that atom, bond and chirality descriptors play an important role in JNK3 activity and also shows that electronegative groups is highly favourble to enhance the biological activity. Our results could be useful to design novel and selective JNK3 inhibitors.

Acebutolol, a Cardioselective Beta Blocker, Promotes Glucose Uptake in Diabetic Model Cells by Inhibiting JNK-JIP1 Interaction

  • Li, Yi;Jung, Nan-Young;Yoo, Jae Cheal;Kim, Yul;Yi, Gwan-Su
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.458-463
    • /
    • 2018
  • The phosphorylation of JNK is known to induce insulin resistance in insulin target tissues. The inhibition of JNK-JIP1 interaction, which interferes JNK phosphorylation, becomes a potential target for drug development of type 2 diabetes. To discover the inhibitors of JNK-JIP1 interaction, we screened out 30 candidates from 4320 compound library with In Cell Interaction Trap method. The candidates were further confirmed and narrowed down to five compounds using the FRET method in a model cell. Among those five compounds, Acebutolol showed notable inhibition of JNK phosphorylation and elevation of glucose uptake in diabetic models of adipocyte and liver cell. Structural computation showed that the binding affinity of Acebutolol on the JNK-JIP1 interaction site was comparable to the known inhibitor, BI-78D3. Our results suggest that Acebutolol, an FDA-approved beta blocker for hypertension therapy, could have a new repurposed effect on type 2 diabetes elevating glucose uptake process by inhibiting JNK-JIP1 interaction.

β-arrestin Promotes c-Jun N-terminal Kinase Mediated Apoptosis via a GABABR·β-arrestin·JNK Signaling Module

  • Wu, Jin-Xia;Shan, Feng-Xiao;Zheng, Jun-Nian;Pei, Dong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.1041-1046
    • /
    • 2014
  • Evidence is growing that the $GABA_B$ receptor, which belongs to the G protein-coupled receptor (GPCR) superfamily, is involved in tumorigenesis. Recent studies have shown that ${\beta}$-arrestin can serve as a scaffold to recruit signaling protein c-Jun N-terminal knase (JNK) to GPCR. Here we investigated whether ${\beta}$-arrestin recruits JNK to the $GABA_B$ receptor and facilitates its activation to affect the growth of cancer cells. Our results showed that ${\beta}$-arrestin expression is decreased in breast cancer cells in comparison with controls. ${\beta}$-arrestin could enhance interactions of the $GABA_BR{\cdot}{\beta}-arrestin{\cdot}JNK$ signaling module in MCF-7 and T-47D cells. Further studies revealed that increased expression of ${\beta}$-arrestin enhances the phosphorylation of JNK and induces cancer cells apoptosis. Collectively, these results indicate that ${\beta}$-arrestin promotes JNK mediated apoptosis via a $GABA_BR{\cdot}{\beta}-arrestin{\cdot}JNK$ signaling module.

Peste des petits ruminants virus infection induces endoplasmic reticulum stress and apoptosis via IRE1-XBP1 and IRE1-JNK signaling pathways

  • Shuyi Yuan;Yanfen Liu;Yun Mu;Yongshen Kuang;Shaohong Chen;Yun-Tao Zhao;You Liu
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.21.1-21.15
    • /
    • 2024
  • Background: Peste des petits ruminants (PPR) is a contagious and fatal disease of sheep and goats. PPR virus (PPRV) infection induces endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR). The activation of UPR signaling pathways and their impact on apoptosis and virus replication remains controversial. Objectives: To investigate the role of PPRV-induced ER stress and the IRE1-XBP1 and IRE1-JNK pathways and their impact on apoptosis and virus replication. Methods: The cell viability and virus replication were assessed by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, immunofluorescence assay, and Western blot. The expression of ER stress biomarker GRP78, IRE1, and its downstream molecules, PPRV-N protein, and apoptosis-related proteins was detected by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. 4-Phenylbutyric acid (4-PBA) and STF-083010 were respectively used to inhibit ER stress and IRE1 signaling pathway. Results: The expression of GRP78, IRE1α, p-IRE1α, XBP1s, JNK, p-JNK, caspase-3, caspase-9, Bax and PPRV-N were significantly up-regulated in PPRV-infected cells, the expression of Bcl-2 was significantly down-regulated. Due to 4-PBA treatment, the expression of GRP78, p-IRE1α, XBP1s, p-JNK, caspase-3, caspase-9, Bax, and PPRV-N were significantly downregulated, the expression of Bcl-2 was significantly up-regulated. Moreover, in PPRV-infected cells, the expression of p-IRE1α, p-JNK, Bax, and PPRV-N was significantly decreased, and the expression of Bcl-2 was increased in the presence of STF-083010. Conclusions: PPRV infection induces ER stress and IRE1 activation, resulting in apoptosis and enhancement of virus replication through IRE1-XBP1s and IRE1-JNK pathways.

The Effect of Bee Venom on COX-2, P38, ERK and JNK in RAW 264.7 Cells (봉약침액(蜂藥鍼液_이 RAW 264.7 세포의 COX-2, P38, ERK 및 JNK에 미치는 영향(影響))

  • Sim, Jae-Young;Jo, Hyun-Chol;Lee, Seong-No;Kim, Kee-Hyun
    • Journal of Pharmacopuncture
    • /
    • v.6 no.2
    • /
    • pp.77-90
    • /
    • 2003
  • The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide(LPS), sodium nitroprusside(SNP), hydrogen peroxide($H_2O_2$)-induced expressions of cyclooxygenase-2(COX-2), p38, jun N-terminal Kinase(JNK) and extra-signal response kinase(ERK) in RAW 264.7 cells, a murine macrophage cell line. Method : The expressions of COX-2, p38, JNK and ERK were determined by western blotting with corresponding antibodies. Results : 1. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited insignificantly $H_2O_2$-induced expression of COX-2 compared with control, respectively. 2. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited significantly LPS, SNP and $H_2O_2$-induced expression of p38 compared with control, respectively. 3. The 1 and $5\;{\mu}g/ml$ of bee venom inhibited significantly SNP-induced expression of JNK compared with control, respectively. All of bee venom inhibited insignificantly LPS and $H_2O_2$-induced expression of JNK compared with control, respectively. 4. The $5\;{\mu}g/ml$ of bee venom inhibited significantly SNP-induced expression of ERK, the $0.5\;{\mu}g/ml$ of bee venom increased significantly $H_2O_2$-induced expression of ERK compared with control. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited insignificantly LPS-induced expression of ERK compared with control, respectively.

Protein Kinase A Functions as a Negative Regulator of c-Jun N-terminal Kinase but not of p38 Mitogen-activated Protein Kinase in PC12 Cells

  • Hur, Kyu-Chung
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.173-179
    • /
    • 2005
  • Cyclic-AMP-dependent protein kinase (PKA) seems to function as a negative regulator of the c-Jun $NH_2-terminal$ kinase (JNK) signaling pathway. We demonstrate here that the activity of the PKA catalytic subunit (PKAc) is reduced in apoptotic PC12 pheochromocytoma cells. Apoptotic progress was inhibited by dibutyryl cyclic AMP (dbcAMP), an analog of cAMP. The rescue by dbcAMP was attributable to inhibition of the JNK but not of the p38 signaling pathway, due to the induction of PKA activity. JNK was present in immunocomplexes of PKAc, and PKAc phosphorylated JNK in vitro. Presence of p38 kinase, however, was not prominent in immunocomplexes of PKAc. Our data suggest that JNK is a target point of negative regulation by PKAc in the JNK signaling pathway.

Hologram and Receptor-Guided 3D QSAR Analysis of Anilinobipyridine JNK3 Inhibitors

  • Chung, Jae-Yoon;Cho, Art-E;Hah, Jung-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2739-2748
    • /
    • 2009
  • Hologram and three dimensional quantitative structure activity relationship (3D QSAR) studies for a series of anilinobipyridine JNK3 inhibitors were performed using various alignment-based comparative molecular field analysis (COMFA) and comparative molecular similarity indices analysis (CoMSIA). The in vitro JNK3 inhibitory activity exhibited a strong correlation with steric and electrostatic factors of the molecules. Using four different types of alignments, the best model was selected based on the statistical significance of CoMFA ($q_2\;=\;0.728,\;r_2\;=\;0.865$), CoMSIA ($q_2\;=\;0.706,\;r_2\;=\;0.960$) and Hologram QSAR (HQSAR: $q_2\;=\;0.838,\;r_2\;=\;0.935$). The graphical analysis of produced CoMFA and CoMSIA contour maps in the active site indicated that steric and electrostatic interactions with key residues are crucial for potency and selectivity of JNK3 inhibitors. The HQSAR analysis showed a similar qualitative conclusion. We believe these findings could be utilized for further development of more potent and selective JNK3 inhibitors.