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Abstract

c-Jun N-terminal kinase-3 (JNK3) is a member of the mitogen-activated protein kinase family (MAPK), and plays an

important role in neurological disorders. Therefore, identification of selective JNK3 inhibitor may contribute towards

neuroprotection therapies. In this work, we performed hologram quantitative structure-activity relationship (HQSAR) on

a series of thiophene trisubstituted derivatives. The best predictions were obtained for HQSAR model with q2 = 0.628

and r2 = 0.986. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high

predictive ability. HQSAR result showed that atom, bond and chirality descriptors play an important role in JNK3 activity

and also shows that electronegative groups is highly favourble to enhance the biological activity. Our results could be

useful to design novel and selective JNK3 inhibitors.
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1. Introduction

The c-Jun N-terminal kinases (JNKs) are a family of

serine/threonine protein kinases of the mitogen acti-

vated protein kinase (MAPK). It activates various tran-

scription factors such as c-jun by phosphorylation of

serine/threonine residues[1-3]. However ongoing studies

indicate that JNKs can phosphorylate a variety of addi-

tional transcription factors such as ATF-2, Elk-1, NFAT

and p53. Furthermore, JNKs can play a wider intracel-

lular role through their phosphorylation of non- nuclear

proteins. For example, an important role for the JNKs

has been suggested in the regulation of apoptosis. In

mammals, there are three JNK genes (jnk1, jnk2 and

jnk3), each on a different chromosome[4]. JNK1 and

JNK2 are ubiquitously expressed while JNK3 is local-

ized primarily in brain. JNK3 has been implicated in

playing important roles in models of neurodegeneration

such as the synaptic loss associated with Alzheimer’s

disease, mediation of neurotoxicity in Parkinson’s dis-

ease as well as involvement in Huntington’s disease and

cerebral ischemia. For a JNK3 inhibitor to demonstrate

in vivo neuroprotection it must be brain penetrant and

have high kinase selectivity to avoid potential toxicity[5].

The X-ray crystal structures of all three JNK isoforms

have been reported. The overall architecture of JNKs is

highly similar to that of other MAP kinases such as

ERK2 and p38[6,7]. The amino acid sequence identity of

the JNK kinases is higher than 90%, with over 98%

homology within the ATP binding site. The high homol-

ogy of the ATP binding site within JNK's makes it chal-

lenging to design isoform-specific ATP-site directed

inhibitors. Therefore, designing selective ATP, compet-

itive JNK (1, 2, and 3) inhibitors is still a challenging

task. As selectivity is the major issue, our in silico anal-

ysis might be the starting point for the synthesis of

highly potent and selective JNK3 analogs, and this

prompted us to initiate the analysis. The main aim of

our study was to optimize the reported selective JNK3

inhibitors using HQSAR method.

2. Experimental Section

2.1. Data Set

In this study, the dataset was selected from reported

literature[1], consisted of 31 molecules belonging to the
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Table 1. Structures and biological activities (pIC50) of JNK3 inhibitors

Compound R R1 R2 pIC50

1 Cl - 7.959

 2* CN - 8.155

3 Br - 7.620

 4* Br - 7.523

5 Br - 7.387

6 Br - 7.284

 7* Br - 6.553

8 Cl - 6.738

9 Br - 7.553

 10 Br - 7.854
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Table 1. Continued

Compound R R1 R2 pIC50

11 CN - 8.222

 12* Br - 8.155

13 Br - 8.222

14 Br - 7.854

15 Br - 8.097

16 Br - 7.854

 17* - - 8.301

18 - - 8.046

19 - - 7.721

 20* - - 7.149

21 - - 8.222

22 - - 7.721

23  - - 8.699

 24*  - - 8.699
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series of thiophene trisubstituted derivatives. For anal-

ysis, the given inhibitory concentration values were

changed to minus logarithmic scale value (pIC50), as a

dependent variable for QSAR analysis by using the for-

mula pIC50 = -log(IC50). It is common to convert the

biological activity data into a logarithmic scale, because

the resulting model behaves more reasonably and would

usually give better linear models. The dataset was ran-

domly partitioned into training and test set molecules by

considering range of molecules so that both the training

and test sets consist of high, medium and low activity

molecules. The training and test set consist of 31 and

8 molecules, respectively. The structures and biological

activities of all compounds including both training set

and test set molecules is shown in Table 1. Before

performing 3D-QSAR studies, all the structures were

fully optimized with Gasteiger-Huckel partial charges,

and subsequently docking as well as 3D-QSAR analysis

were performed. 

2.2. HQSAR Model Calculation

HQSAR is a technique that employs fragment finger-

prints as predictive variables of biological activity or

other structural related data[8]. HQSAR does not require

a 3D structure of bioactive conformation or molecular

alignments. HQSAR model generation deals with the

2D structure directed fragment fingerprints. These

molecular fingerprints are broken into strings at fixed

intervals as specified by a hologram length (HL) param-

eter. The HL determines the number of bins in the holo-

gram into which the fragments are hashed. The optimal

HQSAR model was derived from screening through the

12 default HL values, which were a set of 12 prime

numbers ranging from 53-401. The model development

Table 1. Continued

Compound R R1 R2 pIC50

25 Br 8.222

26  Br 7.824

 27 Br 8.523

28 CN 7.959

 29*  CN 8.097

  30* CN 8.046

31 CN 8.097

*Test set compounds
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was performed using the following parameters: atom

(A), bond (B), connection (C), chirality (Ch), hydrogen

(H) and donor/acceptor (DA). The validity of the model

depends on statistical parameters such as r2, q2 by LOO,

and standard error[9].

2.3. HQSAR Validation

The predictive ability of HQSAR model was

expressed using the following formula where SD is the

sum of squared deviation between the biological activ-

ity of the test set and the mean activity of the training

set molecules and the PRESS is the sum of squared

deviations between predicted and observed activity

value for every molecule in the test set[10]. 

r2pred = (SD-PRESS)/SD

Once the structural information is encoded into the

molecular hologram, HQSAR runs a PLS analysis to

derive the HQSAR in which the molecular holograms

generated were used as independent variables. The

robustness of the model depends on the more challeng-

ing r2pred from the test set data. 

3. Results and Discussion

3.1. HQSAR Statistical Analysis

HQSAR was performed on 31 trisubstituted thi-

ophene derivative using three distinct parameters [frag-

ment size, the hologram length, and the fragment type

(fragment distinction)]. Initially, 14 HQSAR models

were generated using the different fragment distinction

with the fragment size 4–7. The combination of atom,

bond and connection, gave the better model (q2 = 0.614,

r2 = 0.988, SEE = 0.309) based on the hologram length

of 97 with 6 components. The statistical results of the

generated models are shown in Table 2. 

To further investigate the influence of the length of

fragment sizes various model were generated using fol-

lowing sizes: 2–5, 3–6, 4–7, 5–8, 6–9, 7–10, and 8–11.

The statistical parameters showed that there is little

improvement of statistical values by changing the frag-

ment size. The results indicated that fragment size 3-6

showing the best HQSAR model (q2 = 0.628, r2 =

0.986, SEE = 0.303) based on the hologram length of

353 with 6 components. The HQSAR models for dif-

ferent fragment sizes and the statistical results are sum-

marized in Table 3.

Table 2. HQSAR analyses for various fragment distinctions on the key statistical parameters using default fragment Size

(4-7)

Model no
Fragment 

distinction

Statistical parameters

q2 r2 SEE N HL

1 A/B 0.586 0.921 0.321 4 257

2 A/B/C 0.614 0.988 0.309 6 97

3 A/B/C/H 0.579 0.876 0.304 4 97

4 A/B/C/Ch 0.614 0.988 0.309 6 97

5 A/B/C/H/Ch 0.577 0.877 0.305 4 97

6 A/C/DA 0.443 0.869 0.360 5 97

7 A/B/C/H/DA 0.500 0.881 0.331 4 307

8 A/B/H 0.497 0.967 0.352 6 307

9 A/B/H/DA 0.314 0.426 0.368 2 199

10 A/B/C/DA 0.498 0.912 0.332 4 307

11 A/B/Ch/DA 0.547 0.889 0.315 4 151

12 A/B/H/Ch 0.475 0.921 0.349 5 307

13 A/B/DA 0.314 0.426 0.368 2 199

14 A/B/Ch 0.555 0.912 0.312 4 353

A=atoms; B= bonds; C=connection; H=hydrogen atoms; Ch=chirality; DA=Donor and acceptor; N= number of statistical

components; q2= cross-validated correlation coefficient; r2= non-cross validated correlation coefficient; SEE=standard error

of estimate; HL=hologram length.
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3.2. Validation of HQSAR Model

The predictive ability of the developed HQSAR

model was assessed by the test set (nine molecules) pre-

dictions, which were excluded during QSAR model

generation. The predictive ability of the test set mole-

cule for HQSAR were 0.743. The actual and predicted

activities for the training and test set molecules are

given in Table 4 and the scatter plot of predicted versus

actual activities for the training set and test set is shown

in Fig. 1.

3.3. HQSAR Contribution Map Analysis

The HQSAR results gave direct evidence about the

individual atomic contributions to the biological activity

through the use of different color codes. The contribu-

tion of different fragments for the activity of molecules

23, and 27 are displayed in Figure 2a and 2b, respec-

tively. The colors at the red end of the spectrum indi-

cates the poor contributions (red, red orange, and

orange), while colors at the green end reflect favorable

contributions (yellow, green blue, and green). Atoms

Table 3. Influence of various fragment size using the best fragment distinction combination (A/B/C)

Model no Fragment size
Statistical parameters

q2 r2 SEE N HL

15 2-5 0.624 0.930 0.287 4 257

16a 3-6 0.628 0.986 0.303 6 353

17 4-7 0.614 0.988 0.309 6 97

18 5-8 0.452 0.812 0.329 2 199

19 6-9 0.526 0.860 0.306 2 199

20 7-10 0.477 0.879 0.330 3 199

21 8-11 0.411 0.750 0.341 2 97

N= number of statistical components; q2= cross-validated correlation coefficient; r2= non-cross validated correlation

coefficient; SEE=standard error of estimate; HL=hologram length.
aThe model chosen for HQSAR analysis is highlighted in bold font. 

Table 4. Actual, predicted and residual values for the training set and test set of HQSAR model

Compound
Actual  

pIC50

HQSAR
Compound

Actual 

 pIC50

HQSAR

Pred Residual Pred Residual

1 7.959 7.887 0.072  17* 8.301 8.330 -0.029

 2* 8.155 7.787 0.368 18 8.046 7.956 0.090

3 7.620 7.590 0.030 19 7.721 7.818 -0.097

 4* 7.523 7.490 0.033  20* 7.149 7.296 -0.147

5 7.387 7.469 -0.082 21 8.222 8.243 -0.021

6 7.284 7.266 0.018 22 7.721 7.725 -0.004

 7* 6.553 6.961 -0.408  23 8.699 8.618 0.081

8 6.738 6.711 0.027  24* 8.699 8.586 0.113

9 7.553 7.533 0.020 25 8.222 8.206 0.016

 10 7.854 7.912 -0.058 26 7.824 7.831 -0.007

11 8.222 8.296 -0.074 27 8.523 8.521 0.002

 12* 8.155 8.518 -0.363 28 7.959 7.916 0.043

13 8.222 8.191 0.031  29* 8.097 7.976 0.121

14 7.854 7.885 -0.031  30* 8.046 7.637 0.409

15 8.097 8.103 -0.006 31 8.097 8.144 -0.047

16 7.854 7.890 -0.036

*Test set molecules
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with intermediate contributions are colored in white.

From Fig. 2 and 2b, fragment contribution map shown

that A and B ring scaffold were strongly related to the

biological activity of highly active compounds, as it is

represented in blue, yellow and white color codes. The

generated HQSAR model clearly explained the potent

activity of compound 23 and 27. The five member ring

of the highly active compounds 23 and 27 contain a

bromine and sulphur atoms and are shown in blue and

yellow color. Therefore, bromine and sulphur can serve

as structural scaffold for holding the pharmacophoric

groups are necessary for activity and it shows that elec-

tronegative groups is highly favourble to enhance the

biological activity. This fragment may be preferred

when designing new scaffold for designing JNK3 inhib-

itors.

4. Conclusion

In the present work, we have performed HQSAR

analysis on a set of trisubstituted thiophene derivatives.

The HQSAR model shows the importance of atom,

Fig. 1. Scatter plot diagram of predicted versus actual activity of training and test set  compounds by HQSAR analysis.

Fig. 2. (a, b):  HQSAR contribution map for most active compounds 23 and 27.
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bond, and connection parameters. The overall study

indicates that, in HQSAR analysis, fragments

containing information about the ring A and B are

important for an inhibitory effect. Our results can be

utilized to design more potent compounds than the

present series of compounds.
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