• Title/Summary/Keyword: JKMS

Search Result 2,549, Processing Time 0.022 seconds

Preparation and Electromagnetic Properties of Ni-Zn Ferrite by Wet Method (습식합성법을 이용한 Ni-Zn Ferrite의 제조 및 전자기적 특성연구)

  • Jung, Goo-Eun;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2004
  • Ni-Zn ferrite powder was synthesized from metal nitrates, Fe(N $O_3$)$_3$$.$9 $H_2$O, Ni(N $O_3$)$_2$$.$6 $H_2$O, Zn(N $O_3$)$_2$$.$6 $H_2$O by wet direct process to make high permeability material. The composition of the ferrite powder is (N $i_{0.284}$F $e_{0.053}$Z $n_{0.663}$)F $e_2$ $O_4$. Ni-Zn ferrite powder is compounded by precipitating metal nitrates with NaOH in vessel at 90$^{\circ}C$ synthetic temperature for 8 hours. Calcination temperature and sintering temperature were 700$^{\circ}C$ and 1150$^{\circ}C$-1250$^{\circ}C$ respectively for 2 hours. The same compound powder was extracted from metal oxide by wet ballmilling. We compared the properties of powder and the electromagnetic characteristics of the sintered cores obtained from the two different processes. Wet direct process produces smaller particle size with narrower distribution and higher purified ferrite which cores has high permeability and high magnetization.

Magnetocrystalline Anisotropy of α''-Fe16N2 (α''-Fe16N2의 자기결정이방성)

  • Khan, Imran;Son, Jicheol;Hong, Jisang
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.115-118
    • /
    • 2016
  • We investigated the magnetocrystalline anisotropy of pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ by using full-potential linearized augmented plane wave method (FLAPW). A very high magnetic moment was obtained for Fe (4d) site due to the lattice expansion in the z-direction, while the magnetic moment of Fe (4e) and (8h) site were suppressed due to hybridization with neighboring N atom. The calculated spin magnetic moments for different Fe sites (4d, 4e and 8h) were in good agreement with previously reported values. Due to the tetragonal distortion, we found a very large uniaxial anisotropy constant of $0.58MJ/m^3$. Besides, a high value of magnetization of 1.76MA/m was obtained. In additon, the estimated coercive field and maximum energy product of 6.51 kOe and 71.7 MGOe were obtained for pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$. This may suggest that the ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ can be utilized for potential rare-earth free permanent magnet material.

Blood Flow Measurement with Phase Contrast MRI According to Flip Angle in the Ascending Aorta (위상대조도 MRI에서 숙임각에 따른 상행대동맥의 혈류 측정)

  • Kim, Moon Sun;Kweon, Dae Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.142-148
    • /
    • 2016
  • To evaluate the effect of flip angle on flow rate measurements obtained with phase contrast MRI according to the flip angle degree in ascending aorta and velocity encoding (VENC) was (150 m/s). 1.5T MRI in patients 17 (female: 8, male: 9, mean age $57.9{\pm}15.4$) as a target by applying a non-breath holding techniques to flip angle VENC (150 cm/s) in each of the ascending aorta was measured by changing $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$. Blood was obtained a peak velocity, average velocity, net forward volume, net forward volume/body surface area. Ascending aorta from average velocity (AV) measured the average value of the flip angle $20^{\circ}$ (9.87 cm/s), $30^{\circ}$ (9.6 cm/s) and $40^{\circ}$ (10.05 cm/s). Blood flow VENC in was blood flow change in flip angle change was high most blood flow measurement when the flip angle $30^{\circ}$ in VENC, crouching each blood flow is also proportional to the increases in the $20^{\circ}$ to $40^{\circ}$ and was increased, the deviation of the peak velocity and the average velocity is the smallest deviation from the flip angle $30^{\circ}$. Flip angle $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$ in peak velocity, average velocity, net forward volume, net forward volume/body surface area was no statistically significant difference (p > .05). Blood flow velocity and blood flow is measured by applying to adjust the flip angle accurately calculate the blood flow is important information for diagnosis and treatment of cardiovascular diseases, and can help in the examination on the blood flow measurement.

Tensile Stress Measurement of Tendon with Wiedemann Effect (Wiedemann 효과를 이용한 텐던의 인장력 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.133-136
    • /
    • 2016
  • In this study, we have constructed a measuring system to investigate tensile stress of tendons, which is employed in bridges, by means of the magnetic non-destructive testing (NDT) method. For the twisted 7-strands tendon, we have used Wiedemann effect. An ac current was applied to the tendon and voltage induced from Search Coil on Tendon (SCT) under applying tensile stress was measured. The measuring system consists of tensile stress applying apparatus up to 2 GPa, and ac current supply to apply current to the tendon directly to magnetize the tendon. We have invested two kinds of tendon which were produced by different companies for testing with constructed measuring system. Voltage induced from SCT was decreased up to 1.5 GPa linearly and two kinds of tendon which were produced by different companies shows similar trends. Thus, Wiedemann effect was also applicable to measure tensile stress of tendon by means of magnetic NDT.

Price Rally of Rare Earth, Material for High-Tech Products (첨단산업 부품소재인 희토류의 가격파동에 대해서)

  • Choi, Pan-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.116-119
    • /
    • 2011
  • A Chinese shipping boat collided with two Japanese coast guard boats in waters near the disputed Senkaku islands (known as Diaoyudao in China) in the East China Sea on September 7th last year. The boat was held and captain was arrested by Japanese Government. The incident soon turned into a big political and economic conflict between the two countries. Japan's intention was to show her tight control over Senkaku, whereas China's intention was to make it a disputed territory in the eyes of international politics. While the conflict was going on, a top-rank bilateral talk between the two countries was suspended, boycott of Japanese goods was suggested, numerous rallies were held in both countries. This situation lasted for several months until China used an extreme card of "Cutting Supply of Rare Earth to Japan". Under this pressure, Japan instantly released the captain and closed the case. Over this incident, public noticed the importance of rare earth and its impact on the global economy. Since then, the policy of Chinese Government for the rare earth has created more confusion and turmoil in the global market. The purpose of this article is to overview the price rally and future of the rare earth.

A Study on the Method of Magnetic Flux Leakage NDTfor Detecting Axial Cracks (축방향 미소결함 검출을 위한 자기누설 비파괴 검사 방법에 관한 연구)

  • Yun, Seung-Ho;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • From among the NDT (nondestructive testing) methods, the MFL (magnetic flux leakage) method is specially suitable for testing pipelines because pipeline has high magnetic permeability. The system applied to MFL method is called the MFL PIG. The previous MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is highly unlikely to detect the cracks which occur by exterior-interior pressure difference in pipelines and the shape of crack is long and very narrow. In MFL PIG, the magnetic field is performed axially and there is no changes of cross-sectional area at cracks that the magnetic field passes through. Cracks occur frequently in the pipelines and the risk of the accident from the cracks is higher than that from the metal loss and corrosions. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The circumferential MFL (CMFL) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). In CMFL PIG, cracks, standards of NACE, are detectable. To estimate the shape of crack, the leakage of magnetic fields for many kinds of cracks is analyzed and the method is developed by signal processing.

Growth of La0.35Pr0.35Ca0.3MnO3/LaAlO3 Thin Film using Laser Molecular-Beam Epitaxy and its Magnetic Properties (Laser Molecular-Beam Epitaxy를 이용한 La0.35Pr0.35Ca0.3MnO3/LaAlO3 초격자 박막의 합성과 그 자기적 특성의 연구)

  • Seung, S.K.;Song, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.93-98
    • /
    • 2011
  • We successfully grew $La_{0.35}Pr_{0.35}Ca_{0.3}MnO_3$(LPCMO)/$LaAlO_3$(LAO) thin film using Laser Molecular-Beam Epitaxy and studied post-growth annealing effects ($750^{\circ}C$, 5 h) on its crystal structural and magnetic properties. Whereas the single-layered LPCMO and LPCMO/STO superlattice thin films show rough surface before and after the post-growth annealing, LPCMO/LAO superlattice shows a relatively very flat surface even after the post-growth annealing. The enhancement of ferromagnetism of LPCMO/LAO superlattice after the post-growth annealing was remarkable compared to the single-layered LPCMO thin film. The coercive and saturation magnetic field of the single-layed LPCMO thin film were decreased after the post-annealing. However, for LPCMO/LAO superlattice, a same coercive and increased saturation magnetic field were exhibited after post-growth annealing. We suggest that these peculiar observations are originate from the super-structure of LPCMO and LAO.

Growth of Zn0.4Fe2.6O4 Thin Films using Pulsed Laser Deposition and their Crystal Structural and Magnetic Properties (Pulsed Laser Deposition을 이용한 Zn0.4Fe2.6O4 박막의 합성과 그 결정성 및 자기적 특성의 연구)

  • Jang, A.N.;Song, J.H.;Park, C.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.88-92
    • /
    • 2011
  • We grew $Zn_{0.4}Fe_{2.6}O_4$ thin films using Pulsed Laser Deposition and studied their crystal structure and magnetical characteristics as a function of growth temperature ($T_g$). For the film with $T_g=300^{\circ}C$, X-ray reflections from ${\alpha}-Fe_2O_3$ and ZnO were observed. However, when $T_g$ was increased from 300 to $500^{\circ}C$, crystal structure of inverse spinel was stabilized with the crystal orientation of $Zn_{0.4}Fe_{2.6}O_4(111)/Al_2O_3(0001)$ without any detection of ${\alpha}-Fe_2O_3$ and ZnO phases. The surface morphology shows flattening behavior with increasing $T_g$ from 300 to $500^{\circ}C$. These observations indicate that Zn is substituted into tetrahedron A-site of the inverse-spinel $Fe_3O_4$. M-H curves exhibit clear ferromagnetism for the sample with $T_g=500^{\circ}C$ whereas no ferromagnetism is observed for the film with $T_g=300^{\circ}C$.

Magnetic Field Dependence of Torque Signals in Synthetic Antiferromagnetic Coupled CoFeB/Ru/CoFeB Thin Film (합성형 반강자성 결합 재료의 자기장 세기에 따른 토오크 신호 분석)

  • Yoon, Seok-Soo;Jun, Woo-Sang;Kim, Dong-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.83-87
    • /
    • 2011
  • We have analyzed the torque signals measured in synthetic antiferromagnetic (SAF) coupled CoFeB/Ru/CoFeB thin film, which signals were drastically changed at flopping field ($H_F$) and saturation field ($H_s$). The minimum value of negative uniaxial anisotropy constant ($-\;K_1$) was appeared at HF. The $-\;K_1$ was due to the zero net magnetization by the antiferromagnetic coupling between two ferromagnetic layers. Whereas, the biaxial anisotropy constant (K2) was induced in the field range of $H_F$ < H < $H_s$. The induced $K_2$ was originated from deviation angles between magnetization directions of two ferromagnetic layers. And at H > $H_s$, intrinsic uniaxial anisotropy constant of CoFeB layer was observed. These change of the anisotropy constant with magnetic field was explained by the magnetization process of two ferromagnetic layers based on Stoner-Wohlfarth model calculation for SAF thin film.

Dependence of Magnetoresistance on the Underlayer Thickness for Top-type Spin Valve (Top형 스핀밸브 구조의 Si 기판에서의 하지층 두께에 따른 자기저항 특성 연구)

  • Ko, Hoon;Kim, Sang-Yoon;Kim, Soo-In;Lee, Chang-Woo;Kim, Ji-Won;Jo, Soon-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.95-98
    • /
    • 2007
  • In this paper, the magnetic properties and the annealing behavior of spin valve structures with Mo(MoN) underlayers were studied for various underlayer thickness. The spin valve structure was Si substrate/Mo(MoN)$(t{\AA})/NiFe(21{\AA})/CoFe(28{\AA})/Cu(22{\AA})/CoFe(18{\AA})/IrMn(65{\AA})/Ta(25 {\AA})$. Mo and MoN films were deposited on Si substrates and their thermal annealing behavior was analyzed. The deposition rate of the MoN thin film was decreased and tile resistivity of the MoN thin films were increased as the $N_2$ gas flow was increased. The variations of MR ratio and magnetic exchange coupling field of spin valve structure were smaller with MoN underlayers than that with Mo underlayers up to thickness of $51{\AA}$. MR ratio of spin valves with Mo underlayers was 2.86% at room temperature and increased up to 2.91 % after annealing at $200^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased about 2.16%. The MR ratio of spin valves structure with MoN underlayers for $N_2$ gas flow 1 sccm was 5.27% at room temperature and increased up to 5.56% after annealing at $200^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased about 4.9%.