Browse > Article
http://dx.doi.org/10.4283/JKMS.2011.21.3.088

Growth of Zn0.4Fe2.6O4 Thin Films using Pulsed Laser Deposition and their Crystal Structural and Magnetic Properties  

Jang, A.N. (Department of Physics, Chungnam National University)
Song, J.H. (Department of Physics, Chungnam National University)
Park, C.Y. (Department of Physics, KAIST)
Abstract
We grew $Zn_{0.4}Fe_{2.6}O_4$ thin films using Pulsed Laser Deposition and studied their crystal structure and magnetical characteristics as a function of growth temperature ($T_g$). For the film with $T_g=300^{\circ}C$, X-ray reflections from ${\alpha}-Fe_2O_3$ and ZnO were observed. However, when $T_g$ was increased from 300 to $500^{\circ}C$, crystal structure of inverse spinel was stabilized with the crystal orientation of $Zn_{0.4}Fe_{2.6}O_4(111)/Al_2O_3(0001)$ without any detection of ${\alpha}-Fe_2O_3$ and ZnO phases. The surface morphology shows flattening behavior with increasing $T_g$ from 300 to $500^{\circ}C$. These observations indicate that Zn is substituted into tetrahedron A-site of the inverse-spinel $Fe_3O_4$. M-H curves exhibit clear ferromagnetism for the sample with $T_g=500^{\circ}C$ whereas no ferromagnetism is observed for the film with $T_g=300^{\circ}C$.
Keywords
ferromagnetic semiconductor; magnetite; spin injection; $Zn_xFe_{3-x}O_4$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988).   DOI   ScienceOn
2 Gary A. Prinz, Science 282, 1660 (1998)   DOI   ScienceOn
3 J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995)   DOI   ScienceOn
4 J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature 392, 794 (1998).   DOI   ScienceOn
5 H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).   DOI   ScienceOn
6 H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schnherr, and K.H. Ploog, Phys. Rev. Lett. 87, 016601 (2001).   DOI   ScienceOn
7 A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 80, 1240 (2002).   DOI   ScienceOn
8 M. Ramsteiner, H. Y. Hao, A. Kawaharazuka, H. J. Zhu, M. Kstner, R. Hey, L. Dweritz, H. T. Grahn, and K. H. Ploog, Phys. Rev. B 66, 081304(R) (2002).   DOI   ScienceOn
9 D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301, 943 (2003).   DOI
10 Z. Szotek, W. M. Temmerman, D. Kdderitzsch, A. Svane, L. Petit, and H. Winter Phys. Rev. B 74, 174431 (2006).   DOI   ScienceOn
11 Y. Gao, Y. J. Kim, S. A. Chambers, and G. Bai, J. Vac. Sci. Technol. A 15, 332 (1997).   DOI   ScienceOn
12 H. F. Liu, A. Huang, and D. Z. Chi, J. Phys. D: Appl. Phys. 43, 455405 (2010).   DOI   ScienceOn
13 D. Venkateshvaran, M. Althammer, A. Nielsen, S. Geprgs, M. S. R. Rao, S. T. B. Goennenwein, M. Opel, and R. Gross, Phys. Rev. B 79, 134405 (2009).   DOI   ScienceOn
14 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. con Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).   DOI   ScienceOn
15 Igor Zuticc, Jaroslav Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).   DOI   ScienceOn