• Title/Summary/Keyword: J-graph

Search Result 229, Processing Time 0.027 seconds

New Path Planning Algorithm based on the Visibility Checking using a Quad-tree on a Quantized Space, and its improvements (격자화된 공간상에서 4중-나무 구조를 이용한 가시성 검사를 바탕으로 한 새로운 경로 계획 알고리즘과 그 개선 방안들)

  • Kim, Jung-Tae;Kim, Dai-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.48-52
    • /
    • 2010
  • In this paper, we introduce a new path planning algorithm which combines the merits of a visibility graph algorithm and an adaptive cell decomposition. We quantize a given map with empty cells, blocked cells, and mixed cells, then find the optimal path on the quantized map using a visibility graph algorithm. For reducing the number of the quantized cells we use the quad-tree technique which is used in an adaptive cell decomposition, and for improving the performance of the visibility checking in making a visibility graph we propose a new visibility checking method which uses the property of the quad-tree instead of the well-known rotational sweep-line algorithm. For the more efficient visibility checking, we propose two additional improvements for our suggested method. Both of them are used for reducing the visited cells in the quad-tree. The experiments for a performance comparison of our algorithm with other well-known algorithms show that our proposed method is superior to others.

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.

Graph neural network based multiple accident diagnosis in nuclear power plants: Data optimization to represent the system configuration

  • Chae, Young Ho;Lee, Chanyoung;Han, Sang Min;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2859-2870
    • /
    • 2022
  • Because nuclear power plants (NPPs) are safety-critical infrastructure, it is essential to increase their safety and minimize risk. To reduce human error and support decision-making by operators, several artificial-intelligence-based diagnosis methods have been proposed. However, because of the nature of data-driven methods, conventional artificial intelligence requires large amount of measurement values to train and achieve enough diagnosis resolution. We propose a graph neural network (GNN) based accident diagnosis algorithm to achieve high diagnosis resolution with limited measurements. The proposed algorithm is trained with both the knowledge about physical correlation between components and measurement values. To validate the proposed methodology has a sufficiently high diagnostic resolution with limited measurement values, the diagnosis of multiple accidents was performed with limited measurement values and also, the performance was compared with convolution neural network (CNN). In case of the experiment that requires low diagnostic resolution, both CNN and GNN showed good results. However, for the tests that requires high diagnostic resolution, GNN greatly outperformed the CNN.

SHARP ORE-TYPE CONDITIONS FOR THE EXISTENCE OF AN EVEN [4, b]-FACTOR IN A GRAPH

  • Cho, Eun-Kyung;Kwon, Su-Ah;O, Suil
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.757-774
    • /
    • 2022
  • Let a and b be positive even integers. An even [a, b]-factor of a graph G is a spanning subgraph H such that for every vertex v ∈ V (G), dH(v) is even and a ≤ dH(v) ≤ b. Let κ(G) be the minimum size of a vertex set S such that G - S is disconnected or one vertex, and let σ2(G) = minuv∉E(G) (d(u)+d(v)). In 2005, Matsuda proved an Ore-type condition for an n-vertex graph satisfying certain properties to guarantee the existence of an even [2, b]-factor. In this paper, we prove that for an even positive integer b with b ≥ 6, if G is an n-vertex graph such that n ≥ b + 5, κ(G) ≥ 4, and σ2(G) ≥ ${\frac{8n}{b+4}}$, then G contains an even [4, b]-factor; each condition on n, κ(G), and σ2(G) is sharp.

A NOTE ON VERTEX PAIR SUM k-ZERO RING LABELING

  • ANTONY SANOJ JEROME;K.R. SANTHOSH KUMAR;T.J. RAJESH KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.367-377
    • /
    • 2024
  • Let G = (V, E) be a graph with p-vertices and q-edges and let R be a finite zero ring of order n. An injective function f : V (G) → {r1, r2, , rk}, where ri ∈ R is called vertex pair sum k-zero ring labeling, if it is possible to label the vertices x ∈ V with distinct labels from R such that each edge e = uv is labeled with f(e = uv) = [f(u) + f(v)] (mod n) and the edge labels are distinct. A graph admits such labeling is called vertex pair sum k-zero ring graph. The minimum value of positive integer k for a graph G which admits a vertex pair sum k-zero ring labeling is called the vertex pair sum k-zero ring index denoted by 𝜓pz(G). In this paper, we defined the vertex pair sum k-zero ring labeling and applied to some graphs.

ON ERDŐS CHAINS IN THE PLANE

  • Passant, Jonathan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1279-1300
    • /
    • 2021
  • Let P be a finite point set in ℝ2 with the set of distance n-chains defined as ∆n(P) = {(|p1 - p2|, |p2 - p3|, …, |pn - pn+1|) : pi ∈ P}. We show that for 2 ⩽ n = O|P|(1) we have ${\mid}{\Delta}_n(P){\mid}{\gtrsim}{\frac{{\mid}P{\mid}^n}{{\log}^{\frac{13}{2}(n-1)}{\mid}P{\mid}}}$. Our argument uses the energy construction of Elekes and a general version of Rudnev's rich-line bound implicit in [28], which allows one to iterate efficiently on intersecting nested subsets of Guth-Katz lines. Let G is a simple connected graph on m = O(1) vertices with m ⩾ 2. Define the graph-distance set ∆G(P) as ∆G(P) = {(|pi - pj|){i,j}∈E(G) : pi, pj ∈ P}. Combining with results of Guth and Katz [17] and Rudnev [28] with the above, if G has a Hamiltonian path we have ${\mid}{\Delta}_G(P){\mid}{\gtrsim}{\frac{{\mid}P{\mid}^{m-1}}{\text{polylog}{\mid}P{\mid}}}$.

Directed Graph를 이용한 경제 모형의 접근 - Crandall의 탑승자 사망 모형에 관한 수정- ( Directed Graphical Approach for Economic Modeling : A Revision of Crandall's Occupant Death Model )

  • Roh, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.55-64
    • /
    • 1998
  • Directed graphic algorithm was applied to an empirical analysis of traffic occupant fatalities based on a model by Crandall. In this paper, Crandall's data on U.S. traffic fatalities for the period 1947-1981 are focused and extended to include 1982-1993. Based on the 1947-1981 annual data, the directed graph algorithms reveal that occupant traffic deaths are directly caused by income, vehicle miles, and safety devices. Vehicle mileage is caused by income and rural driving. The estimation is conducted using three stage least squares regression. Those results show a difference between the traditional regression methodology and causal graphical analysis. It is also found that forecasts from the directed graph based model outperform forecasts from the regression-based models, in terms of mean squared forecasts error. Furthermore, it is demonstrates that there exists some latent variables between all explanatory variables and occupant deaths.

  • PDF

The Line n-sigraph of a Symmetric n-sigraph-V

  • Reddy, P. Siva Kota;Nagaraja, K.M.;Geetha, M.C.
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • An n-tuple ($a_1,a_2,{\ldots},a_n$) is symmetric, if $a_k$ = $a_{n-k+1}$, $1{\leq}k{\leq}n$. Let $H_n$ = {$(a_1,a_2,{\ldots},a_n)$ ; $a_k$ ${\in}$ {+,-}, $a_k$ = $a_{n-k+1}$, $1{\leq}k{\leq}n$} be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n$ = (G,${\sigma}$) ($S_n$ = (G,${\mu}$)), where G = (V,E) is a graph called the underlying graph of $S_n$ and ${\sigma}$:E ${\rightarrow}H_n({\mu}:V{\rightarrow}H_n)$ is a function. The restricted super line graph of index r of a graph G, denoted by $\mathcal{R}\mathcal{L}_r$(G). The vertices of $\mathcal{R}\mathcal{L}_r$(G) are the r-subsets of E(G) and two vertices P = ${p_1,p_2,{\ldots},p_r}$ and Q = ${q_1,q_2,{\ldots},q_r}$ are adjacent if there exists exactly one pair of edges, say $p_i$ and $q_j$, where $1{\leq}i$, $j{\leq}r$, that are adjacent edges in G. Analogously, one can define the restricted super line symmetric n-sigraph of index r of a symmetric n-sigraph $S_n$ = (G,${\sigma}$) as a symmetric n-sigraph $\mathcal{R}\mathcal{L}_r$($S_n$) = ($\mathcal{R}\mathcal{L}_r(G)$, ${\sigma}$'), where $\mathcal{R}\mathcal{L}_r(G)$ is the underlying graph of $\mathcal{R}\mathcal{L}_r(S_n)$, where for any edge PQ in $\mathcal{R}\mathcal{L}_r(S_n)$, ${\sigma}^{\prime}(PQ)$=${\sigma}(P){\sigma}(Q)$. It is shown that for any symmetric n-sigraph $S_n$, its $\mathcal{R}\mathcal{L}_r(S_n)$ is i-balanced and we offer a structural characterization of super line symmetric n-sigraphs of index r. Further, we characterize symmetric n-sigraphs $S_n$ for which $\mathcal{R}\mathcal{L}_r(S_n)$~$\mathcal{L}_r(S_n)$ and $$\mathcal{R}\mathcal{L}_r(S_n){\sim_=}\mathcal{L}_r(S_n)$$, where ~ and $$\sim_=$$ denotes switching equivalence and isomorphism and $\mathcal{R}\mathcal{L}_r(S_n)$ and $\mathcal{L}_r(S_n)$ are denotes the restricted super line symmetric n-sigraph of index r and super line symmetric n-sigraph of index r of $S_n$ respectively.

A Effective Ant Colony Algorithm applied to the Graph Coloring Problem (그래프 착색 문제에 적용된 효과적인 Ant Colony Algorithm에 관한 연구)

  • Ahn, Sang-Huck;Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.221-226
    • /
    • 2004
  • Ant Colony System(ACS) Algorithm is new meta-heuristic for hard combinational optimization problem. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. Recently, various methods and solutions are proposed to solve optimal solution of graph coloring problem that assign to color for adjacency node($v_i, v_j$) that they has not same color. In this paper introducing ANTCOL Algorithm that is method to solve solution by Ant Colony System algorithm that is not method that it is known well as solution of existent graph coloring problem. After introducing ACS algorithm and Assignment Type Problem, show the wav how to apply ACS to solve ATP And compare graph coloring result and execution time when use existent generating functions(ANT_Random, ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF method) with ANT_XRLF method that use XRLF that apply Randomize to RLF to solve ANTCOL. Also compare graph coloring result and execution time when use method to add re-search to ANT_XRLF(ANT_XRLF_R) with existent generating functions.

Large Scale Protein Side-chain Packing Based on Maximum Edge-weight Clique Finding Algorithm

  • K.C., Dukka Bahadur;Brown, J.B.;Tomita, Etsuji;Suzuki, Jun'ichi;Akutsu, Tatsuya
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.228-233
    • /
    • 2005
  • The protein side-chain packing problem (SCPP) is known to be NP-complete. Various graph theoretic based side-chain packing algorithms have been proposed. However as the size of the protein becomes larger, the sampling space increases exponentially. Hence, one approach to cope with the time complexity is to decompose the graph of the protein into smaller subgraphs. Some existing approaches decompose the graph into biconnected components at an articulation point (resulting in an at-most 21-residue subgraph) or solve the SCPP by tree decomposition (4-, 5-residue subgraph). In this regard, we had also presented a deterministic based approach called as SPWCQ using the notion of maximum edge weight clique in which we reduce SCPP to a graph and then obtain the maximum edge-weight clique of the obtained graph. This algorithm performs well for a protein of less than 500 residues. However, it fails to produce a feasible solution for larger proteins because of the size of the search space. In this paper, we present a new heuristic approach for the side-chain packing problem based on the maximum edge-weight clique finding algorithm that enables us to compute the side-chain packing of much larger proteins. Our new approach can compute side-chain packing of a protein of 874 residues with an RMSD of 1.423${\AA}$.

  • PDF