• Title/Summary/Keyword: J-R

Search Result 7,251, Processing Time 0.035 seconds

Exploring R&D Policy Directions for Semiconductor Advanced Packaging in Korea Based on Expert Interviews (국내 반도체 첨단패키징 R&D 정책방향: 산학연 전문가 조사를 중심으로)

  • S.J. Min;J.H. Park;S.S. Choi
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.3
    • /
    • pp.1-12
    • /
    • 2024
  • As the demand for high-performance semiconductors, such as chips for artificial intelligence and high-bandwidth memory devices, increases along with the limitations of ultrafine processing technology in the semiconductor in-line process, advanced packaging becomes an increasingly important breakthrough technology for further improving semiconductor performance. Major countries, including Korea, the United States, Taiwan, and China, and large companies are strengthening their technological industry capabilities through the development of advanced packaging technology and policy support. Nevertheless, Korea has a lower level of development of related technologies by approximately 66% compared with the most advanced countries. Therefore, we aim to discover the needs for an advanced packaging research and development (R&D) policy through written expert interviews and importance satisfaction analysis. As a result, various implications for R&D policy directions are suggested to strengthen the technological capabilities and R&D ecosystem of the Korean advanced packaging technology.

ON JACOBSON AND NIL RADICALS RELATED TO POLYNOMIAL RINGS

  • Kwak, Tai Keun;Lee, Yang;Ozcan, A. Cigdem
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.415-431
    • /
    • 2016
  • This note is concerned with examining nilradicals and Jacobson radicals of polynomial rings when related factor rings are Armendariz. Especially we elaborate upon a well-known structural property of Armendariz rings, bringing into focus the Armendariz property of factor rings by Jacobson radicals. We show that J(R[x]) = J(R)[x] if and only if J(R) is nil when a given ring R is Armendariz, where J(A) means the Jacobson radical of a ring A. A ring will be called feckly Armendariz if the factor ring by the Jacobson radical is an Armendariz ring. It is shown that the polynomial ring over an Armendariz ring is feckly Armendariz, in spite of Armendariz rings being not feckly Armendariz in general. It is also shown that the feckly Armendariz property does not go up to polynomial rings.

Evaluation of Material Properties Considering Thermal Embrittlement for Accelerated aged CF-8M and CF-8A Cast Austenitic Stainless Steel (가속열화된 CF-8M 및 CF-8A 주조 스테인리스강의 열취화 재료물성치 평가)

  • Kim, Cheol;Park, Heung-Bae;Jin, Tae-Eun;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.118-123
    • /
    • 2004
  • Cast austenitic stainless steel have been widely used for primary coolant piping in light water reactors. This material is subject to thermal embrittlement at reactor operating temperature. CF-8M and CF-8A cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing, and valve bodies in light water reactors. Thermal embrittlement results in spinodal decomposition of delta-ferrite leading to decreased fracture toughness. In this study, the specimens were prepared using an accelerated aging method. The measurement of ferrite content, Charpy impact test and J-R test were performed to verify the predicting equation for aged material properties. In case of above 25% ferrite content, predicted result of J-R curve might be non-conservative.

  • PDF

GMW CODES (GMW 부호)

  • 노종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1128-1135
    • /
    • 1993
  • In this paper, new binary cyclic codes (hereafter, refered to as GMW code) which are generated by using GMW sequence, g(t) = tr((trk(a))r), and its cyclic shifts are introduced. Code length of GMW codes is 2a-1, where k is composite integer, e·J. Dimension of the GMW codes is k(k/j)w-1, where w is a Hamming weight of r. Several properties of GMW codes such as designed distance, minimum distance, and weights of code words are obtained in terms of parameters of GMW sequences. And expansion of GMW sequences in terms of m-sequence and its decimation sequences are introduced and characteristic polynomials of GMW sequences are also derived.

  • PDF