1 |
S. A. Amitsur, A general theory of radicals III, Amer. J. Math. 76 (1954), 126-136.
DOI
|
2 |
S. A. Amitsur, Radicals of polynomial rings, Canad. J. Math. 8 (1956), 355-361.
DOI
|
3 |
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
DOI
|
4 |
R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140.
DOI
|
5 |
R. Antoine, Examples of Armendariz rings, Comm. Algebra 38 (2010), no. 11, 4130-4143.
DOI
|
6 |
E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473.
DOI
|
7 |
V. Camillo, C. Y. Hong, N. K. Kim, Y. Lee, and P. P. Nielsen, Nilpotent ideals in polynomial and power series rings, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1607-1619.
DOI
|
8 |
J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88.
DOI
|
9 |
K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1966), 512-514.
|
10 |
K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
|
11 |
K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, Cambridge-New York-Port Chester-Melbourne-Sydney, 1989.
|
12 |
J. C. Han, H. K. Kim, and Y. Lee, Armendariz property over prime radicals, J. Korean Math. Soc. 50 (2013), no. 5, 973-989.
DOI
|
13 |
J. C. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589-2595.
DOI
|
14 |
Y. Hirano, D. V. Huynh, and J. K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. 66 (1996), no. 5, 360-365.
DOI
|
15 |
S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199.
DOI
|
16 |
Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146.
DOI
|
17 |
D. W. Jung, N. K. Kim, Y. Lee, and S. P. Yang, Nil-Armendariz rings and upper nilradicals, Internat. J. Algebra Comput. 22 (2012), no. 6, 1250059, 13 pp.
|
18 |
N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218.
DOI
|
19 |
N. K. Kim and Y. Lee, On right quasi-duo rings which are -regular, Bull. Korean Math. Soc. 37 (2000), no. 2, 217-227.
|
20 |
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.
DOI
|
21 |
J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
|
22 |
C. Lanski, Nil subrings of Goldie rings are nilpotent, Canad. J. Math. 21 (1969), 904-907.
DOI
|
23 |
T.-K. Lee and T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.
|
24 |
C. Levitzki, A theorem on polynomial identities, Proc. Amer. Math. Soc. 1 (1950), 331-333.
DOI
|
25 |
A. R. Nasr-Isfahani and A. Moussavi, A generalization of reduced rings, J. Algebra Appl. 11 (2012), no. 4, 1250070, 30 pp.
|
26 |
J. Stock, On rings whose projective modules have the exchange property, J. Algebra 103 (1986), no. 2, 437-453.
DOI
|
27 |
W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278.
DOI
|
28 |
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.
DOI
|
29 |
A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233 (2000), no. 2, 427-436.
DOI
|
30 |
B. Ungor, O. Gurgun, S. Halicioglu, and A. Harmanci, Feckly reduced rings, Hacettepe J. Math. Stat. 44 (2015), 375-384.
|
31 |
R. B. Warfield, Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36.
DOI
|