• 제목/요약/키워드: J-Groove Weld

검색결과 29건 처리시간 0.021초

원전 가압기 히터슬리브 J-Groove 이종금속 용접부 보수를 위한 용접 공정변수 최적화에 관한 연구 (A Study on optimization of welding process parameters for J-Groove dissimilar metal weld repair of pressurizer heater sleeve in nuclear power plants)

  • 조홍석;박익근;정광운
    • Journal of Welding and Joining
    • /
    • 제33권1호
    • /
    • pp.87-93
    • /
    • 2015
  • This study was performed to develop repair technology for J-Groove dissimilar metal weld of pressurizer heater sleeve in nuclear power plants. Pad, J-Groove automatic welding and mechanical machining equipments to develop repair technology using 'Half Nozzle Repair' were designed and manufactured. To obtain the optimum welding process parameters during Pad temperbead overlay welding, several welding experiments using Taguchi method were conducted. Weldability of Pad overlay weld specimens was estimated by PT/RT test, FE-SEM, EDS and Vickers hardness test. Also, J-Groove welding to adjust weld shape conditions requiring in ASME Code was carried out and its integrity of weld specimens was evaluated through PT/RT test and optical microscope. Consequently, it was revealed that Pad and J-Groove overlay welding for dissimilar metal weld of pressurizer heater sleeve could be possible to meet Code standard without weld defect.

TOFD UT 기법을 활용한 원자로 상부헤드관통부 J-groove 용접부 결함 검출 가능성 평가 (A Feasibility Study for Flaw Detection in J-groove Weld of Reactor Upper Head Penetration Using Time of Flight Diffraction UT Technique)

  • 이정석;이태훈;김용식
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.1-5
    • /
    • 2015
  • A failure or degradation of reactor upper head penetration is a troublesome problem at Nuclear Power Plants. A flaw in the reactor upper head penetration can result in unplanned plant shutdown for repair, and cause serious economic losses on the plants. Consequently, a detection of flaws is a matter of more importance. Until now, only the base metal, not including J-groove weld, in reactor upper head penetration has been inspected in accordance with 10 CFR 50.55a and ASME code case N-729-1 requirements. Accordingly, it is rather difficult to detect manufacturing defects and repair defects in J-groove weld. This paper presents a case study on the application of Time of Flight Diffraction UT technique to examine the J-groove weld in reactor head penetration using reactor head penetration mockup with artificial flaws. We expect that this study result will offer a way to understand the non-destructive examination technology for J-groove weld in reactor upper head penetration.

축방향 변위가 작용하는 가스 파이프라인 용접부에 존재하는 원주방향 외부표면균열의 변형률 기반 J-적분 및 CTOD 계산 (Estimations of Strain-Based J-integral and CTOD for Circumferential Outer Surface Crack in the Weld of Gas Pipeline Under Axial Displacement)

  • 김경민;박지수;문지희;장윤영;박승현;허남수
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.100-109
    • /
    • 2020
  • Pipelines subjected to ground movement would be easily exposed to large-scale deformation. Since such deformations may cause the pipeline failure, it is important to ensure the safety of pipelines in various operation conditions. However, crack in weld metal have been considered as one of the main causes that can deteriorate the structural integrity of the pipeline. For this reason, the structural integrity of the pipe containing the crack in the weld should be obtained. In order to assess cracked pipe, J-integral and crack-tip opening displacement(CTOD) have been applied widely as the elastic-plastic fracture mechanics parameters representing crack driving force. In this study, engineering solutions to calculate the J-integral and CTOD of pipes with a circumferential outer surface crack in the weld are proposed. For this purpose, 3-dimensional elastic-plastic finite element(FE) analyses have been performed considering the effect of overmatch and width of weld. The shape of the weld was simplified to I-groove, and axial displacement was employed as for loading condition. Based on FE results, the effects of crack size, material properties and width of weldment on J-integral and CTOD were investigated. Additionally, the J-integral and CTOD for I-groove were compared with those for V-groove to examine the effects of the weld shape, and a proportionality coefficient of J-integral and CTOD was calculated from the results of this paper.

가압기 전열기 슬리브 및 J-Groove 용접부의 자동 초음파검사 (Automatic Ultrasonic Inspection on Heater Sleeves and J-Groove Welds of Pressurizer)

  • 류승우;장희준;김선제;이상덕;성종환
    • 한국압력기기공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.20-27
    • /
    • 2010
  • In order to prevent the corrosion of component contacted primary water designed alloy 600 material in the nuclear power plant. But the primary water stress corrosion cracking(PWSCC) of alloy 600 and weld area occurs continuously due to the residual stress. The leakage accident resulted from PWSCC in the drain nozzle of the steam generator of domestic power plants. Heater sleeves of the pressurizer are welded with alloy 600 weld material and therefore exposed to the primary water environment. PWSCC occurred in heater sleeve material and weld area of many foreign power plants. The current issue of domestic nuclear power plants are consequently concentrated to PWSCC of similar material. In order to improve the detection and the sizing of the PWSCC in the welding sleeve of the pressurizer, the automatic UT system and multi-directions probe sets have been developed. The experimental studies have been performed using the mock-up block containing artificial reflectors(ID connected EDM notch) and semi-artificial cracks made from thermal fatigue. The automatic UT System is applied in the detection and the length sizing of the ID/OD on the tube and the J-groove weld area of the artificial reflectors and results of the detection and the sizing are compared respectively. Also, the developed automatic UT system is successfully accomplished to inspect the heater sleeve and the J-groove weld area on the pressurizer for the detection of PWSCC.

  • PDF

원자로 CRDM 관통노즐 J-Groove 용접부 잔류응력 예측을 위한 유한요소 변수 민감도 해석 (Sensitivity Analysis of Finite Element Parameters for Estimating Residual Stress of J-Groove Weld in RPV CRDM Penetration Nozzle)

  • 배홍열;김주희;김윤재;오창영;김지수;이성호;이경수
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1115-1130
    • /
    • 2012
  • 최근 원자로 압력용기 상부헤드 관통노즐 J-groove 용접부 주변에서 균열로 인한 냉각수 누출사고가 발행하고 있다. 이러한 사고의 원인은 용접에 의한 인장잔류응력, 농축된 붕산수 및 응력부식에 민감한 재료로 인한 일차수응력부식균열(PWSCC : primary water stress corrosion cracking)인 것으로 판명되었다. PWSCC 평가는 원자로 건전성 평가의 주요 관심사로서 용접에 의해 발생되는 잔류응력을 정확하게 예측함으로써 가능하다. 본 연구에서는 유한요소해석을 이용하여 국내 원자로의 일반적인 J-groove 용접부의 해석절차를 소개하고, 용접해석 관련 변수의 민감도 해석을 통해 잔류응력 예측기법을 제시하고자 한다. 이를 위해 2 차원 및 3 차원 요한요소해석 방법을 바탕으로 변수 민감도 해석을 수행하였으며, 기존 연구결과와 비교를 통해 해석절차 및 방법의 유용성을 검정하였다.

유한요소법을 이용한 원자로 상부헤드 CRDM 관통노즐 J-Groove 보수용접 영향 분석 (Effects of Repair Weld of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzle on J-Groove Weldment Using Finite Element Analysis)

  • 김주희;유삼현;김윤재
    • 대한기계학회논문집A
    • /
    • 제38권6호
    • /
    • pp.637-647
    • /
    • 2014
  • 국내 가압경수로형 원자로의 압력용기 상부헤드에는 많은 제어봉구동장치(CRDM) 노즐이 분포한다. 이들 노즐은 억지끼워맞춤(Shrink fitting) 방식으로 결합되어 용접 처리 된다. 용접에 의해 발생되는 인장잔류응력은 일차수응력부식균열을 발생시키는 주요 요인이다. 이러한 이유로 최근 15 여 년 동안 관통노즐 용접부 부위에서 균열 발생 사례가 증가하고 있으며, 이를 극복하기 위해 다양한 방안이 모색되고 있다. 또한 용접과정에서 발생되는 불필요한 결함은 일차수응력부식균열(PWSCC)을 가속화 시키는 원인이 되기도 한다. 원자로 제작과정에서 용접에 의한 결함은 보수용접에 의해 즉시 수리가 이루어 진다. 기존의 연구에서는 정상적인 용접과정에서 발생되는 잔류응력을 예측하였으나, 본 연구에서는 용접과정에서 발생되는 결함을 보수하기 위해 실시되는 보수용접이 용접잔류응력에 미치는 영향을 분석하였다.

J-적분을 이용한 후판 부분용입 다층용접재의 파괴 해석 (Fracture Analysis of Thick Plate for Partial Penetration Multi-pass Weldment Using J-integral)

  • 김석;송정일
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.300-307
    • /
    • 2002
  • Partial penetration welding joint is defined as groove welds welded from one side, without steel backing or groove welds welded from both sides but without back gouging. So it has an unwelded portion at the root of the weld. Study of partial penetration weldment fracture behavior includes residual stress analysis and fracture analysis. The J-integral loses its path independency in residual stress field. Therefore, it is necessary to introduce a new J-integral, J, which is defined including the effect of plastic deformation and thermal strain. In this study, theoretical formulation and program were developed for the evaluation of J-integral for the crack tip located in the weldment. Evaluations of fracture behavior were performed for partial penetration multi-pass weldment of 25.4mm thick plate by J-integral. From a point of fracture in partial penetration multi-pass welding, it seemed to be better to control root face smaller than 6.35mm.

SA508 class 3 서브머지드 아크용접부의 기계적 성질에 미치는 입열량의 영향 (Effect of Heat Input on the Mechanical Properties of SA508 class 3 Steel Weldments with Submerged Arc Welding)

  • 서윤석;고진현;김남훈;오세용;주기남
    • Journal of Welding and Joining
    • /
    • 제22권5호
    • /
    • pp.38-45
    • /
    • 2004
  • The present study is to investigate the effect of heat input on the microstructure, tensile properties and toughness of single-pass submerged arc bead-in-groove welds produced on SA508 class 3 steels. The heat input was varied in the range of 1.6, 3.2 and 5.0 kJ/mm. The toughness of weld metals was evaluated by using subsize Charpy V-notch specimens in the temperature range of -19$0^{\circ}C$ to 2$0^{\circ}C$. The weld microstructure and fractography were observed by optical and scanning electron microscopies, respectively. With increasing heat inputs, tensile strength and hardness of weld metals were decreased while elongation was increased. The poor notch toughness at 1.6 kJ/mm was attributed to the formation of ferrite with aligned second phase and banitic microstructure with high yield strength while that at 5.0 kJ/mm was due to the presence of grain boundary and polygonal ferrites. The microstructure of the intermediate energy input welds consisted of a high proportion of acicular ferrite with limited polygonal ferrites, which provide improved notch toughness.

초음파(超音波)TANDEM사각법(斜角法)에 의한 원형(圓形) 및 띠형결함(形缺陷)의 크기 평가(評價)에 관한 연구(硏究) (A Study on the Size Evaluation of Disc and Band Type Flaw by Ultrasonic Tandem Testing)

  • 한응교;엄호섭;김재중
    • 비파괴검사학회지
    • /
    • 제5권2호
    • /
    • pp.12-21
    • /
    • 1986
  • Generally, butt welds with plate thickness $30{\sim}40mm$ are welded with groove angle $40^{\circ},\;60^{\circ},\;70^{\circ}$, etc. In the detection of internal weld defects, oblique testing with single probe has been mainly used. But, recently, in acccordance with enlargement of welded structure, thick plate with 100-200mm are frequently required. Thus I-groove welding method was lately developed and often used. In this case, most frequently generated defects are the lack of weld penetration and incomplete fusion between base metal and welding material. If we would detect by oblique testing with single probe, detecting flaw is occassionally impossible or very underestimated. In this study, the limit for applying tandem method was studied in dise and band type flaws. The estimation of flaw size could be within 10% error compared to real flaws.

  • PDF

원자로 상부헤드 제어봉구동장치 관통노즐 형상이 J-Groove 용접잔류응력에 미치는 영향 (Effects of Geometry of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzles on J-Groove Weld Residual Stress)

  • 김주희;김윤재;이성호;허남용;배홍열;오창영;김지수;박흥배;이승건;김종성;허남수
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1337-1345
    • /
    • 2011
  • 가압경수로형 원자로의 원자로압력용기 상부헤드에는 많은 제어봉구동장치(CRDM) 노즐이 분포한다. 최근 10 여 년 동안 제어봉구동장치 alloy 600 CRDM 노즐에서 균열 발생 사례가 증가하고 있으며, 이는 용접과 연관성이 매우 깊은 것으로 알려져 있다. CRDM 노즐에서 발생하는 축 및 원주방향 균열은 유럽과 미국의 원자력 발전소에서 발견되었으며, 사고의 원인은 용접 잔류응력 및 작용하중에 기인하는 일차수응력부식균열(PWSCC)임이 확인되었다. 이러한 이유로 본 연구에서는 유한요소해석을 통해 한국형 원자로의 CRDM 관통 노즐 용접부를 대상으로 용접 잔류응력을 예측하였으며, 특히, 관통노즐의 위치와 형상, 용접부 필렛 형상 및 인접노즐 용접에 의한 영향을 분석하였다.