• Title/Summary/Keyword: J-적분법

Search Result 83, Processing Time 0.047 seconds

Evaluation of Load-Carrying Capacities for Cracked Pipes (균열이 존재하는 배관의 하중 지지능력 평가)

  • Jang, Yun-Seok;Kim, Hyeon-Su;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1350-1358
    • /
    • 2001
  • During the last decade, a number of experiments and numerical analyses had been performed in conjunction with the development of simplified analytical methods to estimate the fracture behavior of cracked piping in nuclear power plant. However, the necessity of further investigation for the analytical methods was issued because of the discrepancies with the experimental data. The objective of this paper is to find out the optimum methods to evaluate the load-carrying capacities for cracked pipes. To do this, numerous analytical and finite element analyses were carried out for various pipe and crack geometries and materials. These results were synthesized for crack shapes and can be used as basic data for leak before analyses and risk informed inspections.

Prediction of Oil Amount Leaked from Damaged Tank Using 2-dimensional Particle Simulation (파손된 탱크의 기름 유출량 산정을 위한 2차원 입자법 시뮬레이션)

  • Nam, J.W.;Hwang, S.C.;Park, J.C.;Kim, M.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.278-285
    • /
    • 2011
  • In the present study, the numerical prediction of the oil amount leaked from the hole of a damaged tank is investigated using the improved MPS (Moving Particle Semi-implicit) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow. The governing equations, which consist of the continuity and Navier-Stokes equations, are solved by Lagrangian moving particles, and all terms expressed by differential operators should be replaced by the particle interaction models based on a Kernel function. The simulation results are validated though the comparison with the analytic solution based on Torricelli's equilibrium relation. Furthermore, a series of numerical simulations under the various conditions are performed in order to estimate more accurately the initial amount of leaked oil.

  • PDF

DELTA-FORMULATION OF A SEGREGATED NAVIER-STOKES SOLVER WITH A DUAL-TIME INTEGRATION (이중시간적분법을 이용한 순차적 유동해석 기법)

  • Kim, J.;Tack, N.I.;Kim, S.B.;Kim, M.H.;Lee, W.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.31-35
    • /
    • 2006
  • The delta-formulation of the Navier-Stokes equations has been popularly used in the aerodynamics area. Implicit algorithm can be easily implemented in that by using Taylor series expansion. This formulation is extended for an unsteady analysis by using a dual-time integration. In the meanwhile, the incompressible flows with heat transfers which occur in the area of thermo-hydraulics have been solved by a segregated algorithm such as the SIMPLE method, where each equation is discretised by using an under-relaxed deferred correction method and solved sequentially. In this study, the dual-time delta formulation is implemented in the segregated Navier-Stokes solver which is based on the collocated cell-centerd scheme with un unstructured mesh FVM. The pressure correction equation is derived by the SIMPLE method. From this study, it was found that the Euler dual-time method in the delta formulation can be combined with the SIMPLE method.

  • PDF

A Vorticity-Based Method for Incompressible Viscous Flow Analysis (와도를 기저로 한 비압축성 점성유동해석 방법)

  • Suh J. C.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.

The Potential Energy Recovery and Thermal Degradation of Used Tire Using TGA (열분석법을 이용한 사용후 타이어의 열적 특성과 포텐셜 에너지의 회수)

  • Kim, Won-Il;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.135-146
    • /
    • 1999
  • The thermal degradation kinetics of SBR and tire were studied using a conventional thermogravimetric analysis in the stream nitrogen at a heating rate of 5, 10, 15, $20^{\circ}C/min$, respectively. Thermogravimetric curves and their derivatives were analyzed using various analytical methods to determine the kinetic parameters. The degradation of the SBR and tire was found to be a complex process which has multi-stages. The Friedman method gave average activation energies for the SBR and tire of 247.53kJ/mol and 230.00kJ/mol, respectively. Mean-while, the Ozawa method Eave 254.80kJ/mol and 215.76kJ/mol. It would appear that either. Friedman's differential method or Ozawa's integral method provided satisfactory mathematical approaches to determine the kinetic parameters for the degradation of the SBR and tire. Approximately 86% and 55% of oil products were obtained at a final temperature of $700^{\circ}C$ and a heating rate of $20^{\circ}C/min$ for the SBR and tire respectively.

  • PDF

Development of Nuclear Piping Integrity Expert System(I) - Evaluation Method RecomMendation and Material Properties Inference - (원자력배관 건전성평가 전문가시스템 개발(1) - 평가법 제시 및 재료물성치 추론 -)

  • Kim, Yeong-Jin;Seok, Chang-Seong;Choe, Yeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.575-584
    • /
    • 1996
  • The objective of this paper is to develop an expert system for nuclear piping integrity. This paper describes the selection methodology of integrity evalution method and the inference of material properties. To select the integrity evaluation method, the weight factor for respective material properties was obtained by the sensitivity analysis of the effect of material properties on integrity evaluation method. Subsequently the possession ratio for respective integrity evaluation method was computed, and the most appropriate integrity evaluation method for given input information is selected. In the material properties inference, stress-strain curves and J-R curves were predicted from tensile properties such as yield strength and tensile strength.

Linear-Impact Behaviour of PWR Fuel Assembly (시간적분법을 이용한 경수로 핵연료집합체의 선형충격 거동해석)

  • Yim, J.S.;Sohn, D.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.627-632
    • /
    • 2000
  • A finite element model for the transient dynamic analysis of a PWR fuel assembly was developed and programmed as a name of DAMASS. The Newmark time integration method was used to solve the governing equation of motion. Results of the program was compared with those of ANSYS in terms of displacement and impact forces to show the validity of the model. Up to now it has capability of solving the linear impact of FA(s) and it will be extended to the non-linear analysis of a FA in the future.

  • PDF

Effect of the Measuring Method of Reverberation Time Using Impulse Response Method on the Normalized Impact Sound Pressure Level (임펄스응답적분법을 이용한 잔향시간의 측정방법이 규준화 바닥충격음레벨에 미치는 영향)

  • Lee, J.W.;Kwon, Y.P.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.34-39
    • /
    • 2006
  • For the evaluation of the normalized impact sound pressure level, the reverberation time of the receiving room should be measured. This paper deals with the effect of the time constant of FFT analyzer and the measuring points on reverberation time. It is found that the time constant should be in the range between 10 ms and 35 ms. While the effect of measuring points on the reverberation time is significant when the bandwidth is narrow it is negligible in the evaluation of the normalized impact sound pressure level.