• Title/Summary/Keyword: J -적분

Search Result 290, Processing Time 0.023 seconds

A Study on the Fracture Behavior of a Two Dimensional Crack in Gas Pipelines Considering Constraint Effects (구속효과를 구려한 가스배관 결함의 2차원적 파괴거동 해석에 관한 연구)

  • Sim, Do-Jun;Jang, Yeong-Gyun;Choe, Jae-Bung;Kim, Yeong-Jin;Kim, Cheol-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • EFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it is assumed that the J-integral uniquely characterizes the crack-tip stress-strain field. However, it has been proven that the J-integral alone can not be sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to investigate the fracture behavior of a crack in gas pipeline(KS D 3507) by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature(24$\^{C}$) and low temperature(-40$\^{C}$) to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects. For precise assessment of cracks, especially shallow cracks, in KS D 3507 pipeline, constraint effect must be considered.

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.

Development of Nuclear Piping Integrity Expert System(I) - Evaluation Method RecomMendation and Material Properties Inference - (원자력배관 건전성평가 전문가시스템 개발(1) - 평가법 제시 및 재료물성치 추론 -)

  • Kim, Yeong-Jin;Seok, Chang-Seong;Choe, Yeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.575-584
    • /
    • 1996
  • The objective of this paper is to develop an expert system for nuclear piping integrity. This paper describes the selection methodology of integrity evalution method and the inference of material properties. To select the integrity evaluation method, the weight factor for respective material properties was obtained by the sensitivity analysis of the effect of material properties on integrity evaluation method. Subsequently the possession ratio for respective integrity evaluation method was computed, and the most appropriate integrity evaluation method for given input information is selected. In the material properties inference, stress-strain curves and J-R curves were predicted from tensile properties such as yield strength and tensile strength.

Evaluation of Fracture Toughness of Dynamic Interlaminar for CFRP Laminate Plates by Resin Content (수지함량에 따른 CFRP 적층판의 층간파괴 인성평가)

  • 김지훈;양인영;심재기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.43-49
    • /
    • 2003
  • This research work has been carried out for finding J-integral in mode II of CFRP(carbon fiber reinforced plastics) laminate plates based on the classical bar theory in dynamic conditions with consideration of the effect of inertia forces, eventually to lead to finding the dynamic inter-layer fracture toughness. Dynamic inter-layer fracture toughness was found by a self-made ENF(End Notched Flexure) experimental apparatus using Split Hopkinson's Bar(SHPB), and also observed the variation of the fracture toughness haying different resin contents and fiber arrangements of CFRP specimen([$0_3^{\circ}/90_3^{\circ}/0_6^{\circ}/90_3^{\circ}/0_3^{\circ}$], [$0_{20}^{\circ}$], [$0_5^{\circ}/90_{10}^{\circ}/0_5^{\circ}$]). As an experimental result, in either cases of quasi-static or dynamic load condition, the critical load and the inter-layer fracture toughness increased sharply depending on the increase of resin contents. Therefore, it could, be concluded that the effect by resin contents is the major factor determining the inter-layer fracture toughness in the CFRP laminate plates.

Failure Assessment Diagrams of Semi-Elliptical Surface Crack with Constraint Effect (구속상태를 고려한 반타원 표면균열의 파손평가선도)

  • Seo, Heon;Han, Tae-Su;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2022-2032
    • /
    • 1999
  • In recent years, the subject of remaining life assessment has drawn considerable attention in the power generation industry. In power generation systems a variety of structural components, such as steam pipes, turbine rotors, and superheater headers, typically operate at high temperatures and high pressures. Thus a life prediction methodology accounting for fracture and rupture is increasingly needed for these components. For accurate failure assessment, in addition to the single parameter such as K or J-integral used in traditional fracture mechanics, the second parameter like T-stress describing the constraint is needed. The most critical defects in such structures are generally found in the form of semi-elliptical surface cracks in the welded piping-joints. In this work, selecting the structures of surface-cracked plate and straight pipe, we first perform line-spring finite element modeling, and accompanying elastic-plastic finite element analyses. We then present a framework for including constraint effects (T-stress effects) in the R6 failure assessment diagram approach for fracture assessment.

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

Dynamic Response and Vibration Characteristics of an Isolation Rail Track under a Traveling Mass (주행질량하의 방진 궤도레일의 동적응답 및 진동특성)

  • Oh, B.J.;Ryu, B.J.;Kim, J.H.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2011
  • This paper presents the dynamic response and the vibration characteristics for a rail-track supported by discrete springs and dampers. Recently, automatic conveyer system, rail-track, rack-master system demand the soundproof facilities and vibration suppression measures in order to satisfy the strict environmental standards. The equations of motions of the dynamic characteristics for a vibration suppression rail-track under a traveling mass were derived by Galerkin's mode summation method considering gravity, centrifugal force, Coriolis force, inertia force of the moving mass, transverse inertia of the rail-track. Also, numerical results were calculated by Runge-Kutta integration method. In order to investigate vibration characteristics and dynamic responses, modal testing and measurement of the responses of the rail-track were performed. Through the experiment and numerical simulations, numerical results have a good agreement with experimental ones.

An Interfacial Crack Model with Inclined Strip Plastic Zones under Mode III Load (모우드 III 하중 하에서 경사진 띠모양의 소성역을 가정한 계면균열 모델)

  • 박재학;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.243-251
    • /
    • 1989
  • Assuming plastic zones spreading out on each slip plane of the two materials under out-of-plane shear loading, the size of each plastic zone is computed. The effect of the different frictional shear stresses in the two materials on the size of each plastic zone and the relative displacement at the crack tip are investigated. The relation between the J-integral in this model and the relative displacement at the crack tip is also obtained.

Hygrothermal Fracture Analysis of Plastic IC Package in Reflow Soldering Process (리플로 납땜 공정에서 플라스틱 IC 패키지의 습기 및 열로 인한 파손문제 해석)

  • Lee, Kang-Yong;Lee, Taek-Sung;Lee, Kyung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1347-1355
    • /
    • 1996
  • The purpose of this paper is to evaluate the delamination and fracture integrity of the IC plastic package under hygrothermal loading by stress analysis and fracture mechanics approaches. The plastic SOJ package with a dimpled diepad under the reflow slodering process of IR heating type is considered. On the package without a crack, the stress variation according to the change of the design variables such as the material and shape of the package is calculated and the possibility of delamination is considered. For the model fully delaminated between the chip and diepad, J-integrals are calculated for the various design variables and the fracture integrity is discussed. From the results, optimal design values of variables to prevent the delamination and fracture of IC package are obtained. In this study, FDM program to obtain the vapor pressure from the content of moisture absorbed into the package is developed.

Influence of the variation of its geometry on the disk failure (디스크 형상 변화에 따른 파손에 끼치는 영향)

  • Kim, Jong-Man;Hwang, Hyo-Kune;Dan, Byung-Ju;Kim, Wae-Yeul;Lee, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.31-35
    • /
    • 2004
  • The speed competition of optical disk drive has been accelerated with the fast advancement of its storage density and data transmission technology. The continuous increase of the spinning speed of CD meets the unexpected and catastrophic failure of disk during the operation. The effect of its thickness and outer radius of disk were investigated to reduce stresses and J-integral around the crack tip. The effect of its thickness was considered ahead of the crack tip. In the effect of outer radius of disk, linear elastic fracture mechanics was used to obtain the critical crack length, which indicates the onset length for unstable crack growth. This approach is so significant as to detect the growing crack by disk drive before the catastrophic failure, which will provide the standard size of its safety for high-speed disk drive.

  • PDF