• Title/Summary/Keyword: J$_{}$ c/degradation

Search Result 244, Processing Time 0.03 seconds

Relative Palatability to Sheep of Some Browse Species, their In sacco Degradability and In vitro Gas Production Characteristics

  • Abdulrazak, S.A.;Nyangaga, J.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1580-1584
    • /
    • 2001
  • A study was conducted to estimate the nutritive value of some selected acacia forages using palatability index, in sacco degradability and in vitro gas production characteristics. Ten wethers (mean wt. $18{\pm}3.5kg$) were offered Acacia tortilis, Acacia nilotica, Acacia mellifera, Acacia brevispica, Acacia Senegal and Leucaena leucocephala (control) using a cafeteria system to determine the species preference by the animals. The acacia species were rich in nitrogen and showed variable palatability pattern. Significant (p<0.05) differences in relative palatability index (RPI) were detected among the species with the following ranking: brevispica > leucaena > mellifera > tortilis > Senegal > nilotica. Acacia nilotica appeared to be of low relative palatability with RPI of 24% and this was attributed to relatively high phenolic concentrations. The DM potential degradability (B) and rate of degradation (c) of the species were significantly (p<0.05) different, ranging from 40.1 to 59.1% and 0.0285 to 0.0794/h respectively. Acacia species had moderate levels of rumen undegradable protein, much higher than that in leucaena. In vitro gas production results indicated the effect of polyphenolic compounds on the fermentation rate, with lower gas production recorded from A. nilotica and tortilis. Based on RPI, A. brevispica and mellifera were superior to the rest and comparable to L. leucocephala. Long-term feeding trials are required with the superior species when used as protein supplements to poor quality diets.

Superconducting magnet system of in-flight separator for a heavy ion accelerator planned in Korea

  • Kim, J.W.;Kim, D.G.;Jo, H.C.;Choi, Y.S.;Kim, S.H.;Sim, K.D.;Sohn, M.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.28-31
    • /
    • 2015
  • An in-flight fragment separator, which aims to produce and study rare isotopes, consists of superferric quadrupole triplets and $30^{\circ}$ dipole magnets to focus and bend the beams for achromatic focusing and momentum dispersion, respectively. The separator is divided into pre and main stages, and we plan to use superconducting magnets employing high-Tc superconductor (HTS) coils in the pre-separator area, where radiation heating is high. The HTS coils will be cooled by cold He gas in 20-50 K, and in the other area, superferric magnets using low-temperature superconductor (LTS) will be used at 4 K. A few LTS coils were wound and successfully tested in a LHe dewar, and the design of cryostat has been optimized. Development of the HTS coils is ongoing in collaboration with a group at KERI. An HTS coil of racetrack shape was wound and tested in a $LN_2$ bath and in a dewar with cryocooler. No degradation on critical current due to coil winding was found.

Correlation between Physical Defects and Performance in AlGaN/GaN High Electron Mobility Transistor Devices

  • Park, Seong-Yong;Lee, Tae-Hun;Kim, Moon-J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.49-53
    • /
    • 2010
  • Microstructural origins of leakage current and physical degradation during operation in product-quality AlGaN/GaN high electron mobility transistor (HEMT) devices were investigated using photon emission microscopy (PEM) and transmission electron microscopy (TEM). AlGaN/GaN HEMTs were fabricated with metal organic chemical vapor deposition on semi-insulating SiC substrates. Photon emission irregularity, which is indicative of gate leakage current, was measured by PEM. Site specific TEM analysis assisted by a focused ion beam revealed the presence of threading dislocations in the channel below the gate at the position showing strong photon emissions. Observation of electrically degraded devices after life tests revealed crack/pit shaped defects next to the drain in the top AlGaN layer. The morphology of the defects was three-dimensionally investigated via electron tomography.

Evaluation of Mechanical Properties and Microstructure of Thermally Aged 308 and 316L Stainless Steel Welds (가속 열시효에 따른 308 및 316L 스테인리스강 용접부의 기계적 물성 및 미세구조 평가)

  • Kong, Byeong Seo;Hong, Sunghoon;Jang, Changheui;Kim, Maan-Won
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.92-100
    • /
    • 2017
  • Due to the presence of ferrite phase in the finished welds, austenitic stainless steel welds (ASSWs) are considered susceptible to the thermal aging embrittlement during long-term service in light water reactor environment. In this study, the thermal aging embrittlement of typical ASSWs, E308 and ER316L welds, were evaluated after the long-term exposure up to 20,000 h at $400^{\circ}C$, which is considered as an accelerated thermal aging condition. After thermal aging, the decrease of tensile ductility and fracture toughness was observed. The microstructure observation with high resolution transmission electron microscopy revealed that spinodal decomposition in ferrite phase of both E308 and ER316L welds would be the main cause of the degradation of mechanical properties. Also, it was shown that the difference of thermal ageing embrittlement between ER316L and E308 welds was significant, such that the reduction of fracture resistance for ER316L weld was much larger than that of E308 weld.

Performance of Polymer Suspension Insulator with Shed Profile (갓 형상에 따른 폴리머 현수애자의 열화특성)

  • Cho, H.G.;Lee, U.Y.;Kang, S.H.;Lim, K.J.;Yeo, H.G.;Ji, W.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.539-542
    • /
    • 2003
  • Recently, the polymer insulators which are being used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination which lead to the well known phenomenon of dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. The shape design of porcelain insulator is formalized but design standard for polymer insulator is no standardized up to now, much research is necessary in real condition. In this paper, the aging property of polymer insulator with shed shape(regular, alternative type) is analyzed through numerical analysis, CEA(canadian electricity association) tracking wheel test and IEC 61109 Annex C.

  • PDF

The Effect of F-treatment on the Degradation Behavior of the $CaNi_{5}$ and MG-$CaNi_{5}$ Electrodes ($CaNi_{5}$ 및 MG-$CaNi_{5}$ 전극의 퇴화거동에 미치는 불화처리의 영향)

  • Lee, C.R.;Oh, S.J.;Kang, S.G.
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.622-629
    • /
    • 1999
  • Effects of the fluorination in the $K_2$TiF\ulcorner solution and in-situ KF+ KOH electrolyte on the electrochemical charge-discharge properties of CaNi\ulcorner and the Mg-CaNi\ulcorner electrodes were investigated. In-situ fluorination in the KF+ KOH electrolyte compared with pre-fluorination in the$ K_2$TiF\ulcorner solution could improve the electrochemical cycling durability of CaNi\ulcorner and MG-CaN\ulcorner electrodes. The fluorinated layer on the alloy surface by pre-fluorination to improve the activity and anti-corrosion of the electrodes was dissolved in the pure KOH electrolyte during the cycling. The fluorinated layer was formed continuously on the surface of the electrode by thee2N KF addition in the 6N KOH electrolyte. The excess F\ulcorner ion addition in KOH electrolyte could improve the electrochemical cycling durability of CaNi\ulcorner and Mg-CaNi\ulcorner electrode. But, in case of MG-CaNi\ulcorner electrode, the discharge capacity of the electrode was reduced and the poor cycling property was shown with increasing of the MG process times.

  • PDF

Crack growth rate evaluation of alloys 690/152 by numerical simulation of extracted CT specimens

  • Lee, S.H.;Kim, S.W.;Cho, C.H.;Chang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1805-1815
    • /
    • 2019
  • While nickel-based alloys have been widely used for power plants due to corrosion resistance and good mechanical properties, during the last couple of decades, failures of nuclear components increased gradually. One of main degradation mechanisms was primary water stress corrosion cracking at dissimilar metal welds of piping and reactor head penetrations. In this context, precise estimation of welding effects became an important issue for ensuring reliability of them. The present study deals with a series of finite element analyses and crack growth rate evaluation of Alloys 690/152. Firstly, variation of residual stresses and equivalent plastic strains was simulated taking into account welding of a cylindrical block. Subsequently, extraction and pre-cracking of compact tension (CT) specimens were considered from different locations of the block. Finally, crack growth curves of the alloys and heat affected zone were developed based on analyses results combined with experimental data in references. Characteristics of crack growth behaviors were also discussed in relation to mechanical and fracture parameters.

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications

  • Dai, Yaonan;Zheng, Xiaotao;Ding, Peishan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3474-3490
    • /
    • 2021
  • Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.

The Corrosion Behavior of Cold-Rolled 304 Stainless Steel In Salt Spray Environments (염분분사환경에서 냉연 304 스테인레스강의 부식거동)

  • Chiang, M.F.;Young, M.C.;Huang, J.Y.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.93-98
    • /
    • 2011
  • Saline corrosion is one of the major degradation mechanisms for stainless steel type 304 (SS304) dry storage cask during the spent fuel interim storage period. Slow strain rate test (SSRT) and neutral salt spray test (NSS) were performed at $85^{\circ}C$ and $200^{\circ}C$ with 0.5 wt% sodium chloride mist sprayed on the cold-rolled SS304 specimens of different degrees of reduction in this study. The weight changes of the NSS specimens tested at $85^{\circ}C$ for 2000 hours differed greatly from those at $200^{\circ}C$. The weight loss of NSS specimens was not significant at $85^{\circ}C$ but the weight gain decreased gradually with increasing the cold-rolled reduction. The yield strength (YS) and ultimate tensile stress (UTS) values obtained from the SSRT tests for lightly cold-rolled specimens in the salt spray environment at $85^{\circ}C$ and $200^{\circ}C$ are slightly lower than in air. But for those with 20% reductions, the specimen strengths were no longer changed by the saline corrosion. The preliminary results demonstrated that the quality and performance of cold-rolled SS304 is acceptable for fabrication of dry storage casks. However, more work on the corrosion behavior of cold-rolled stainless steel in the saline atmosphere is needed to better understand its long-term performance.

Development of Permanent Reference Electrode for Corrosion Monitoring of Underground Metallic Structures (지중 금속구조물 부식감시를 위한 영구매설용 기준전극 개발)

  • Ha, Y.C.;Bae, J.H.;Ha, T.H.;Lee, H.G.;Lee, J.D.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.532-534
    • /
    • 2004
  • The advancement of electronics and telecommunication technologies has forced the risk management system for underground metallic structures to evolve into the remote monitoring and control system. Especially, facilities such as gas pipelines, oil pipelines and water distribution lines might make hazardous effect on human safety without continuous monitoring and control. As a result, pipeline engineers have applied cathodic protection system to prevent the degradation of their facilities by corrosion and carried out a periodic monitoring of the pipe-to-soil (P/S) potentials at numberous test boxes along their pipelines. The latter action on a road in downtowns, however, is so much dangerous that the inspectors should be ready to suffer the threatening of their lives and maintenance. In order to minimize these social costs and hazards, a stand-alone type corrosion monitoring equipment which can be installed in test box, store the P/S data for given Belied and send the data by wired/wireless telecommunications is under development. In order to obtain the exact P/S data, however, a reference electrode should be located as close to the pipeline as possible. Actually, the measured potential by a conventional portable reference electrode contain inevitably an IR drop portion caused by the current flow from the cathodic protection rectifier or the subway railroad. To minimize this error, it is recommended that the reference electrode should be buried within 10 cm from the pipeline. In this paper, we describe the design parameters for fabricating the permanent type reference electrode and the characteristics of the developed reference electrode.

  • PDF