• Title/Summary/Keyword: J$_{}$ c/degradation

Search Result 244, Processing Time 0.031 seconds

Predicting In Sacco Rumen Degradation Kinetics of Raw and Dry Roasted Faba Beans (Vicia faba) and Lupin Seeds (Lupinus albus) by Laboratory Techniques

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1377-1387
    • /
    • 2000
  • Two laboratory techniques: (1) an in vitro method with two procedures for measuring protein degradabilities and (2) an in vitro method with three procedures for measuring protein solubility, were investigated to determine which laboratory techniques could most accurately predict the quantity of rumen protein degradation kinetics of legume seeds after dry roasting under various conditions, in terms of (1) rumen protein disappearance ($D_j$, where j=0, 2, 4, 8, 12, 24 and 48 h incubation), (2) rumen protein effective degradability (EDCP), (3) the parameters describing rumen degradation characteristics (the soluble fraction: S, the potentially degradable fraction: D, undegradable fraction: U, lag time: T0 and the degradation rate: Kd) and (4) rumen bypass protein (BCP), which were determined by the method accepted internationally at present, in sacco nylon bag technique using the standardized Dutch method. Feeds evaluated were the raw and dry roasted whole faba (Vicia faba) beans (WFB) and whole lupin (Lupinus albus) seeds (WLS), each was dry roasted under various conditions (at 110, 130 or $150^{\circ}C$ for 15, 30 or 45 min). In vitro protein degradability ($D_1$_Auf and $D_{24}$_Auf) were determined using the modified Aufr re method by enzymatic hydrolysis for 1 h and 24 h using a protease extracted from Streptomyces griseus in a borate-phosphate buffer. In vitro protein solubility ($bf_1$_S, $bf_2$_S, $bf_3$_S) was measured in a borate-phosphate buffer with three different procedures. Results from laboratory techniques (in vitro) were correlated and linearly regressed with in sacco results. Of the three procedures of in vitro protein solubility evaluated, none of them could predict in sacco results with good precision. The highest Pearson correlation coefficient ($R^2$) was less than 0.50. Of two procedures of in vitro protein degradability studied, the $D_1$_Auf values were closely correlated with in sacco parameters: Kd, EDCP and %BCP with high R' values: 0.82, 0.85 and 0.85, respectively, and closely correlated with in sacco $D_j$ at 2, 4, 8 and 12 h rumen incubation with high $R^2$ values: 0.83, 0.91, 0.93 and 0.83, respectively. The $D_{24}$_Auf values could not predict in sacco results. The highest $R^2$ value was less then 0.40. These results indicated that in vitro protein solubility measured in borate-phosphate failed to identify differences in the rate and extent of protein degradation of legume seeds after dry roasting under various conditions and thus should not be used to predict rumen degradation, particularly for heat processed feedstuffs. But in vitro protein degradability using the modified Aufr re method by enzymatic hydrolysis for 1 h or possibly an intermediate time (>1 h and <24 h) is a promising laboratory procedure to detect effectiveness of dry roasting legume seeds on rumen protein degradation characteristics and could be used as a simple laboratory method to predict the rate and extent of protein degradation in the rumen in sacco with high accuracy. The equations to predict EDCP, Kd and BCP of dry roasted legume seeds (WLS and WFB) under various conditions are as follow: For both: EDCP (%)=-1.37+1.06*$D_1$_Auf ($R^2=0.85$, p<0.01). For both: Kd (%/h)=-21.81+0.49*$D_1$_Auf ($R^2=0.82$, p<0.01). For both: %BCP=103.37-1.07*$D_1$_Auf ($R^2=0.85$, p<0.01).

Implant Anneal Process for Activating Ion Implanted Regions in SiC Epitaxial Layers

  • Saddow, S.E.;Kumer, V.;Isaacs-Smith, T.;Williams, J.;Hsieh, A.J.;Graves, M.;Wolan, J.T.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.1-6
    • /
    • 2000
  • The mechanical strength of silicon carbide dose nor permit the use of diffusion as a means to achieve selective doping as required by most electronic devices. While epitaxial layers may be doped during growth, ion implantation is needed to define such regions as drain and source wells, junction isolation regions, and so on. Ion activation without an annealing cap results in serious crystal damage as these activation processes must be carried out at temperatures on the order of 1600$^{\circ}C$. Ion implanted silicon carbide that is annealed in either a vacuum or argon environment usually results in a surface morphology that is highly irregular due to the out diffusion of Si atoms. We have developed and report a successful process of using silicon overpressure, provided by silane in a CAD reactor during the anneal, to prevent the destruction of the silicon carbide surface, This process has proved to be robust and has resulted in ion activation at a annealing temperature of 1600$^{\circ}C$ without degradation of the crystal surface as determined by AFM and RBS. In addition XPS was used to look at the surface and near surface chemical states for annealing temperatures of up to 1700$^{\circ}C$. The surface and near surface regions to approximately 6 nm in depth was observed to contain no free silicon or other impurities thus indicating that the process developed results in an atomically clean SiC surface and near surface region within the detection limits of the instrument(${\pm}$1 at %).

  • PDF

Formation Temperature Dependence of Thermal Stability of Nickel Silicide with Ni-V Alloy for Nano-scale MOSFETs

  • Tuya, A.;Oh, S.Y.;Yun, J.G.;Kim, Y.J.;Lee, W.J.;Ji, H.H.;Zhang, Y.Y.;Zhong, Z.;Lee, H.D.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.611-614
    • /
    • 2005
  • In this paper, investigated is the relationship between the formation temperature and the thermal stability of Ni silicide formed with Ni-V (Nickel Vanadium) alloy target. The sheet resistance after the formation of Ni silicide with the Ni-V showed stable characteristic up to RTP temperature of $700\;^{\circ}C$ while degradation of sheet resistance started at that temperature in case of pure-Ni. Moreover, the Ni silicide with Ni-V indicated more thermally stable characteristic after the post-silicidation annealing. It is further found that the thermal robustness of Ni silicide with Ni-V was highly dependent on the formation temperature. With the increased silicidation temperature (around $700\;^{\circ}C$), the more thermally stable Ni silicide was formed than that of low temperature case using the Ni-V.

  • PDF

Analysis of Thermal Degradation Process if Commercial Rubber for Environmentally Benign Process (범용고무의 환경친화적 처리를 위한 열분해 공정 해석)

  • 김형진;정수경
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.123-133
    • /
    • 2000
  • The kinetic analysis was carried out for commercial rubbers such as NR, IR, BR, SBR 1500, and SBR 1700. Kinetic analysis for the commercial rubbers was performed using the thermogravimetric method, with which the activation energies of NR obtained by Kissinger, Friedman, and Ozawa's method were 195.0, 198.3 and 186.3kJ/mol, whereas that of SBR 1500 were 246.4, 247.5 and 254.8kJ/mol, respectively. It was shown that the yield of pyrolytic oil was generally increased with final temperature increasing, yet slightly decreased or increased over $700^{\circ}C$. Considering the effect of heating rate, it was found that the yield of pyrolytic oil was not consistent for each sample. The number average molecular weight of SBR 1500 was in the range of 740~2486. The calorific value of SBR 1500 was 39~40kJ/g, which were made comparative study of the conventional fuel such as kerosene, diesel, light fuel, and heavy fuel. Therefore it was essential that the selection of the suitable kinetic model and the mathematical solution because of the difference in parameters obtained from each method. It was proposed that the range of $600~700^{\circ}C$ in final temperature and high heating rate due to short run time. It was suggested that the pyrolytic oil be available to use to the fuel.

  • PDF

Recent Advances in Titania-based Composites for Photocatalytic Degradation of Indoor Volatile Organic Compounds

  • Raza, Nadeem;Kim, Ki-Hyun;Agbe, Henry;Kailasa, Suresh Kumar;Szulejko, Jan E.;Brown, Richard J.C.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.217-234
    • /
    • 2017
  • Indoor air pollutants can cause severe health problems, specifically in terms of toxicological impacts on human. Every day, a complex mixture of many air pollutants is emitted from various sources and subject to atmospheric processes that can create varied classes of pollutants such as carboxylic acids, aldehydes, ketones, peroxyacetyl nitrate, and hydrocarbons. To adhere to indoor air quality standards, a number of techniques such as photocatalytic oxidation of various volatile organic compounds (VOCs) have been employed. Among these techniques, titania ($TiO_2$) based photocatalytic reactions have proven to be the best benchmark standard approach in the field of environmental applications. Over the last 45 years, $TiO_2$-based photocatalytic reactions have been explored for the degradation of various pollutants. This review discusses the indoor air quality profile, types of indoor pollutants, available indoor air cleaning approaches, and performance of $TiO_2$-based catalysts. Finally, we have presented the perspectives on the progress of $TiO_2$ induced photocatalysis for the purification of indoor air.

The Dynamics of Protein Decomposition in Lakes of Different Trophic Status - Reflections on the Assessment of the Real Proteolytic Activity In Situ

  • Siuda, Waldemar;Kiersztyn, Bartosz;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.897-904
    • /
    • 2007
  • The aim of this paper is to discuss the methodology of our investigation of the dynamics of protein degradation and the total in situ protealytic activity in meso/eutrophic, eutrophic, and hypereutrophic freshwater environments. Analysis of the kinetics and rates of enzymatic release of amino acids in water samples preserved with sodium azide allows determination of the concentrations of labile proteins $(C_{LAB})$, and their half-life time $(T_{1/2})$. Moreover, it gives more realistic information on resultant activity in situ $(V_{T1/2})$ of ecto- and extracellular proteases that are responsible for the biological degradation of these compounds. Although the results provided by the proposed method are general y well correlated with those obtained by classical procedures, they better characterize the dynamics of protein degradation processes, especially in eutrophic or hypereutrophic lakes. In these environments, processes of protein decomposition occur mainly on the particles and depend primarily on a metabolic activity of seston-attached bacteria. The method was tested in three lakes. The different degree of eutrophication of these lakes was clearly demonstrated by the measured real proteolytic pattern and confirmed by conventional trophic state determinants.

A Study on the Failure Detection and Validation of Pressurizer Level Signal in Nuclear Power Plant (원전 가압기수위신호 고장검출 및 검증에 관한연구)

  • Oh, S.H.;Kim, D.I.;Zoo, O.P.;Chung, Y.H.;Lim, C.H.;Yun, W.Y.;Kim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.175-177
    • /
    • 1995
  • The sensor signal validation and failure detection system must be able to detect, isolate, and identify sensor degradation as well as provide a reconstruction of the measurements. In this study, this is accomplished by combining the neural network, the Generalized Consistency Checking(GCC), and the Sequential Probability Ratio Test(SPRT) method in a decision estimator module. The GCC method is a computationally efficient system for redundant sensors, while the SPRT provides the ability to make decisions based on the degradation history of a sensor. The methodology is also extended to the detection of noise degradation. The acceptability of the proposed method is demonstration by using the simulation data in safety injection accident of nuclear power plants. The results show that the signal validation and sensor failure detection system is able to detect and isolate a bias failure and noise type failures under transient conditions. And also, the system is able to provide the validated signal by reconstructing the measurement signals in the failure conditions considered.

  • PDF

Study on Correlation Between Feed Protein Fractions and In situ Protein Degradation Rate (사료 단백질의 Fraction과 In situ 단백질 분해율의 상관관계에 관한 연구)

  • Lee, S.Y.;Chung, Y.S.;Song, J.Y.;Park, S.H.;Sung, H.G.;Kim, H.J.;Ko, J.Y.;Ha, Jong-Kyu
    • Journal of Animal Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.351-358
    • /
    • 2007
  • This experiment was conducted to determine correlation between in vitro protein fractions and in situ protein degradation rate with major dairy protein sources(soybean meal, corn gluten meal, cotton seed meal, kapok seed meal and perilla meal). Five protein fractions were obtained according to the Cornell Net Carbohydate and Protein System(CNCPS), and in situ protein degradation rates were determined by technique using nylon bags incubated for 0, 4, 8, 12 and 24hrs in the rumen of three Holstein steers. Fraction A was highest in kapok seed meal(14.6%) and lowest in corn gluten meal(0.6%) (P<0.05). The highest B1, B2 and B3 fractions were contained in soybean meal(8.27%), cotton seed meal(74%), and perilla meal(40%), respectively. Corn gluten meal was very high in fraction C. In situ protein degradation rate of soybean meal was 98%, highest among five protein sources, and corn gluten meal had the lowest rate at 28%. Correlation analysis showed that easily soluble fractions of both methods, in situ protein degradation rate and digestible protein fractions, and in situ protein degradation rate minus “a” and fraction B2+B3 were highly correlated. These results indicate that in vitro protein fractionation can be used in the estimation of in situ protein degradation.

Electronic and Optical Properties of amorphous and crystalline Tantalum Oxide Thin Films on Si (100)

  • Kim, K.R.;Tahir, D.;Seul, Son-Lee;Choi, E.H.;Oh, S.K.;Kang, H.J.;Yang, D.S.;Heo, S.;Park, J.C.;Chung, J.G.;Lee, J.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.382-382
    • /
    • 2010
  • $TaO_2$ thin films as gate dielectrics have been proposed to overcome the problems of tunneling current and degradation mobility in achieving a thin equivalent oxide thickness. An extremely thin $SiO_2$ layer is used in order to separate the carrier in MOSFETchannel from the dielectric field fluctuation caused by phonons in the dielectric which decreases the carrier mobility. The electronic and optical properties influenced the device performance to a great extent. The atomic structure of amorphous and crystalline Tantalum oxide ($TaO_2$) gate dielectrics thin film on Si (100) were grown by utilizing atomic layer deposition method was examined using Ta-K edge x-ray absorption spectroscopy. By using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy (REELS) the electronic and optical properties was obtained. In this study, the band gap (3.400.1 eV) and the optical properties of $TaO_2$ thin films were obtained from the experimental inelastic scattering cross section of reflection electron energy loss spectroscopy (REELS) spectra. EXAFS spectra show that the ordered bonding of Ta-Ta for c-$TaO_2$ which is not for c-$TaO_2$ thin film. The optical properties' e.g., index refractive (n), extinction coefficient (k) and dielectric function ($\varepsilon$) were obtained from REELS spectra by using QUEELS-$\varepsilon$(k, $\omega$)-REELS software shows good agreement with other results. The energy-dependent behaviors of reflection, absorption or transparency in $TaO_2$ thin films also have been determined from the optical properties.

  • PDF

Analysis of Thermal Oxide Behavior with Isothermal Degradation of TBC Systems Applied to Single Crystal Superalloy (단결정 초내열합금에 적용된 열차폐코팅의 등온열화에 따른 산화물 거동분석)

  • Kim, K.;Wee, S.;Choi, J.;Kim, D.;Song, H.;Lee, J.;Seok, C.S.;Chung, E.S.;Kwon, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • In the field of combined cycle power generation, thermal barrier coating(TBC) protects the super-heat-resistant alloy, which forms the core component of the gas turbine, from high temperature exposure. As the turbine inlet temperature(TIT) increases, TBC is more important and durability performance is also important when considering maintenance cost and safety. Therefore, studies have been made on the fabrication method of TBC and super-heat-resistant alloy in order to improve the performance of the TBC. In recent years, due to excellent properties such as high temperature creep resistance and high temperature strength, turbine blade material have been replaced by a single crystal superalloy, however there is a lack of research on TBC applied to single crystal superalloy. In this study, to understand the isothermal degradation performance of the TBC applied to the single crystal superalloy, isothermal exposure test was conducted at various temperature to derive the delamination life. The growth curve of thermally grown oxide(TGO) layer was predicted to evaluate the isothermal degradation performance. Also, microstructural analysis was performed by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the effect of mixed oxide formation on the delamination life.