• Title/Summary/Keyword: Iterative teaming

Search Result 16, Processing Time 0.028 seconds

Research for Improvement of Iterative Precision of the Vertical Multiple Dynamic System (수직다물체시스템의 반복정밀도 향상에 관한 연구)

  • 이수철;박석순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.64-72
    • /
    • 2004
  • An extension of interaction matrix formulation to the problem of system and disturbance identification for a plant that is corrupted by both process and output disturbances is presented. The teaming control develops controllers that learn to improve their performance at executing a given task, based on experience performing this task. The simplest forms of loaming control are based on the same concept as integral control, but operating in the domain of the repetitions of the task. This paper studies the use of such controllers in a decentralized system, such as a robot moving on the vertical plane with the controller for each link acting independently. The basic result of the paper is to show that stability and iterative precision of the learning controllers for all subsystems when the coupling between subsystems is turned off, assures stability of the decentralized teaming in the coupled system, provided that the sample time in the digital teaming controller is sufficiently short. The methods of teaming system are shown up for the iterative precision of each link.

Takagi-Sugeno Fuzzy Model-Based Iterative Learning Control Systems: A Two-Dimensional System Theory Approach (Takagi-Sugeno 퍼지모델에 기반한 반복학습제어 시스템: 이차원 시스템이론을 이용한 접근방법)

  • Chu, Jun-Uk;Lee, Yun-Jung;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.385-392
    • /
    • 2002
  • This paper introduces a new approach to analysis of error convergence for a class of iterative teaming control systems. Firstly, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established if the form of T-S fuzzy model. We analyze the error convergence in the sense of induced L$_2$-norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative teaming controller design problem to guarantee the error convergence can be reduced to the linear matrix inequality problem. This method provides a systematic design procedure for iterative teaming controller. A simulation example is given to illustrate the validity of the proposed method.

A Second-Order Iterative Learning Algorithm with Feedback Applicable to Nonlinear Systems (비선형 시스템에 적용가능한 피드백 사용형 2차 반복 학습제어 알고리즘)

  • 허경무;우광준
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.608-615
    • /
    • 1998
  • In this paper a second-order iterative learning control algorithm with feedback is proposed for the trajectory-tracking control of nonlinear dynamic systems with unidentified parameters. In contrast to other known methods, the proposed teaming control scheme utilize more than one past error history contained in the trajectories generated at prior iterations, and a feedback term is added in the learning control scheme for the enhancement of convergence speed and robustness to disturbances or system parameter variations. The convergence proof of the proposed algorithm is given in detail, and the sufficient condition for the convergence of the algorithm is provided. We also discuss the convergence performance of the algorithm when the initial condition at the beginning of each iteration differs from the previous value of the initial condition. The effectiveness of the proposed algorithm is shown by computer simulation result. It is shown that, by adding a feedback term in teaming control algorithm, convergence speed, robustness to disturbances and robustness to unmatched initial conditions can be improved.

  • PDF

Control of Wafer Temperature Uniformity in Rapid Thermal Processing using an Optimal Iterative teaming Control Technique (최적 반복 학습 제어기법을 이용한 RTP의 웨이퍼 온도균일제어)

  • 이진호;진인식;이광순;최진훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.358-358
    • /
    • 2000
  • An iterative learning control technique based on a linear quadratic optimal criterion is proposed for temperature uniformity control of a silicon wafer in rapid thermal processing.

  • PDF

A Study on Indirect Adaptive Decentralized Learning Control of the Vertical Multiple Dynamic System (수직다물체시스템의 간접적응형 분산학습제어에 관한 연구)

  • Lee Soo Cheol;Park Seok Sun;Lee Jae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.92-98
    • /
    • 2005
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized teaming control based on adaptive control method. The original motivation of the teaming control field was loaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Some techniques will show up in the numerical simulation for vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link.

A Dual-Stage Servo System for an NFR Disk Drive using Iterative Learning Control (반복 학습 제어를 이용한 NFR 디스크 드라이브의 2단 서보 시스템)

  • 문정호;도태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.277-283
    • /
    • 2003
  • Recently, near-field recording (NFR) disk drive schemes have been proposed with a view to increasing recording densities of hard disk drives. Compared with hard disk drives. NFR disk drives have narrower track pitches and are exposed to more severe periodic disturbances resulting from eccentric rotation of the disk. It is difficult to meet servo system design specifications for NFR disk drives with conventional VCM actuators in that the servo system for an NFR disk drive generally requires a feater gain and higher bandwidth. To tackle the problem various dual-stage actuator systems composed of a microactuator mounted on top of a conventional VCM actuator have been proposed. This article deals with the problem of designing a tracking servo system far an NFR disk drive adopting a dual-stage actuator. We summarize design constraints pertaining to the dual-stage servo system and present a new servo scheme using iterative teaming control. We design feedback compensators and an iterative teaming controller for a target plant and verify the validity of the proposed control scheme through a computer simulation.

Input signal reconstruction for nonlinear systems using iterative learning procedures (반복 학습법에 의한 비선형 계의 입력신호 재현)

  • Seo, Jong-Soo;S. J. Elliott
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.855-861
    • /
    • 2002
  • This paper demonstrates the reconstruction of input signals from only the measured signal for the simulation and endurance test of automobiles. The aim of this research is concerned with input signal reconstruction using various iterative teaming algorithm under the condition of system characteristics. From a linear to nonlinear systems which provides the output signals are estimated in this algorithm which is based on the frequency domain. Our concerns are that the algorithm can assure an acceptable stability and convergence compared to the ordinary iterative learning algorithm. As a practical application, a f car model with nonlinear damper system is used to verify the restoration of input signal especially with a modified iterative loaming algorithm.

  • PDF

A Study on the Properness Constraint on Iterative Learning Controllers (반복 학습 제어기의 properness 제한에 관한 연구)

  • Moon, Jung-Ho;Doh, Tae-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.393-396
    • /
    • 2002
  • This note investigates the necessity of properness constraint on iterative learning controllers from the viewpoint of the initial condition problem. It is shown that unless the iterative learning controller is proper, the teaming control input may grow unboundedly and thus not be feasible in practice, though the convergence of tracking error is theoretically guaranteed. In addition, this note analyzes the effects of initial condition misalignment in the iterative learning control system on the control input and convergence property.

Continuous Speech Recognition Using N-gram Language Models Constructed by Iterative Learning (반복학습법에 의해 작성한 N-gram 언어모델을 이용한 연속음성인식에 관한 연구)

  • 오세진;황철준;김범국;정호열;정현열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.62-70
    • /
    • 2000
  • In usual language models(LMs), the probability has been estimated by selecting highly frequent words from a large text side database. However, in case of adopting LMs in a specific task, it is unnecessary to using the general method; constructing it from a large size tent, considering the various kinds of cost. In this paper, we propose a construction method of LMs using a small size text database in order to be used in specific tasks. The proposed method is efficient in increasing the low frequent words by applying same sentences iteratively, for it will robust the occurrence probability of words as well. We carried out continuous speech recognition(CSR) experiments on 200 sentences uttered by 3 speakers using LMs by iterative teaming(IL) in a air flight reservation task. The results indicated that the performance of CSR, using an IL applied LMs, shows an 20.4% increased recognition accuracy compared to those without it. This system, using the IL method, also shows an average of 13.4% higher recognition accuracy than the previous one, which uses context-free grammar(CFG), implying the effectiveness of it.

  • PDF

Indirect Adaptive Decentralized Learning Control based Error Wave Propagation of the Vertical Multiple Dynamic Systems (수직다물체시스템의 오차파형전달방식 간접적응형 분산학습제어)

  • Lee Soo-Cheol
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.211-217
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the teaming control field was teaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF