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ABSTRACT

This note investigates the necessity of properness constraint on iterative learning controllers from the viewpoint of the
initial condition problem. It is shown that unless the iterative learning controller is proper, the learning control input
may grow unboundedly and thus not be feasible in practice, though the convergence of tracking error is theoretically
guaranteed. In addition, this note analyzes the effects of initial condition misalignment in the iterative learning control

system on the control input and convergence property.
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1. Introduction

. Iterative learning control is a type of intelligent control
scheme for improving tracking accuracy of systems
performing repeated tasks. In this control scheme, a
single tracking task is repeated over and over, always
starting from the same initial condition, and the control
action at each trial is created utilizing control results
obtained from previous trials. Even with an imperfect
plant model, a well-designed iterative learning control
system can provide improved tracking performance after
fully learning the given task.

Although iterative learning control was originally
proposed in the time-domain, it has also been explored
in the frequency-domain in parallel [2]-[7]. The
frequency—domain design provides more design freedom
and physical insights not available in time-domain
designs, such as tracking bandwidth, or convergence rate
varying with frequency.

Designing an iterative

learning controller in the
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iterative learning control, convergence, initial condition problem, controller properness.

frequency domain can be thought of as choosing
appropriate filters operating on previously acquired
information so that the iterative process may converge.
In some literature, improper filters are employed to
assure the convergence of the tracking error. Though
any reasonable implementation of an improper filter is
noncausal, a noncausal filter can be implemented without
difficulty in iterative learmning control systems because
we have an entire history of errors to filter from the
previous trial.

This note shows that the learning control input
created by improper filters is not feasible in practice
unless a strict condition on the initial state of the plant
is perfectly satisfied. Unless the condition is met, the
learning control input or tracking error may not
converge in practice as opposed to the theory. As a
result, it is shown that properness constraint on the
iterative learning controller is inevitable for practical
purposes. In addition, this note analyzes the effects of
initial condition misalignment on the convergence
property.
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Fig. 1. An iterative learning control system

2. System Statement

Consider the iterative learning control system shown
in Fig.l. In this figure, y«# is the desired output
trajectory, »(# is the system output, e(# is the tracking
error, (9 is the feedback control input, and v,(#) is the
iterative learning control input. C(s) and G(s) are
proper transfer functions of the feedback controller and
the controlled plant, respectively. The feedback controller
C(s) is designed independently of the iterative learning
controller. The learning filters P(s) and (s) are added
to the existing feedback control system with a view to
improving the tracking performance.

The input update law of the iterative learning
controller is given in the frequency-domain as

V19 = P() Vi(s) + A U3 ()

where Vi(s) and U(s) denote the Laplace transforms of

the learning control input and feedback control input at
the #th iteration. P(s) and &(s) are proper and stable
transfer functions, which characterize the iterative
learning process. The input update law (1) can be
modified to time-domain learning algorithms such as the
so-called P-type learning law

0 pe1( ) =va(D + Kel(d

depending upon the choice of P(s) and Q(s). P(s) and
Q(s) are designed such that the learning control input
() converges as k—co with the input update law (1).

1et us denote the zero-input response of the plant as
W(H=L Y Y'(s)] and assume that the initial state of
the plant is identical for every iteration, SO
YY) = Y%s), Vk In other words, y($ is invariant
with respect to the iteration. In [6], it is proved that if

| Plw) — Qo) T(w)IK1, Vo, 2

k — oo, the vi D)
converges in the L,-norm sense to u.(#) defined by

then as learning control input

v(D =LY Vus)]

-L —1[ Qs)CLs) YA8) = Y(9) ] 3
1—P()+QDT(s) 1+ G(HC()
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where

s)C(s

__9s)
TO=TL690 -

Obviously, if we set P(s)=1 and find a proper &s)
so that the convergence condition (2) is satisfied, then
perfect tracking, ie, w(=yLf), is achieved. However,

this choice is feasible only in the case where T(s) is a
stable and minimum-phase system of relative degree 0
[4). Putting it differently, if 7(s) is strictly proper or of
nonminimum phase, it is impossible to find a proper filter
Q(s) guaranteeing the convergence of the iterative
process. This is too restrictive because most plants in
real situations are strictly proper; hence 7(s) is strictly
proper as well.

The introduction of the filter P(s) gives extra design
freedom and makes the convergence condition less
restrictive at the cost of tracking accuracy in the
high-frequency band. Now that any reference trajectory
to be tracked virtually remains in the low frequency
region, accurate tracking is normally needed up to the
bandwidth of importance. Therefore, despite the
theoretically inevitable error, accurate tracking of the
desired trajectory can be preserved within the bandwidth
if P(s) is chosen in such a way that it is close to 1 in
low frequency range where tracking is important and
that it rolls off in high frequency range to guarantee
system convergence [2], [3]. 6], [7].

3. Main Results

The elimination of the properness constraint on €Xs)
relaxes the convergence condition and enables us to
obtain a perfect tracking property even for
nonminimum-phase systems or strictly proper systems.
The adoption of an improper filter 6Xs), however, causes
a critical problem when the condition that the initial
plant state should remain invariant for every trial is
violated. Suppose that @(s) is not proper. Defining

Q(S)C(S) 1 4)
1-P()+QT(s) 1+G()C(s)

we see that H(s) should be improper. Let us define

H(s)=

y(”(t)=—5;7y(t).

Then, from the initial-value theorem, we obtain
v.(0) = limsV.(s)
= lzrgsH(s) (YA —YUs)
= limsH(s) (s ' (3 (0) —57(0)
+5 720 — Y ON + -

+5 10— (0))
+ '““)L[ yd(b € _yo”’(t)])



where [ denotes the relative degree of H '(s) and L
denotes the Laplace operator. Thus, if 0y # 307(0) for
some 0 < j <I—1, then u.(0) grows unboundedly,
which means v./(® t=0.
Consequently, if the initial values of zero-input response
resulting from the initial plant state and its derivatives
up to I—1th order do not completely equal the desired
ones, an impulse should appear at ¢=0 in the converged
learning control input.

It is virtually impossible in practice to make the
desired and actual initial values identical because no
physical system is free of noise or disturbance that
perturbs the plant state. Moreover, the quantization that
always exists in digital computations may cause the
problem, though desired and actual initial values are
identical. If the initial state is misaligned, without regard
to the amount of the misalignment, the overall control
system does not work as the theory predicts, and in
some cases it may be even destabilized. In a similar
context, The importance of initial state matching in a
D-type learning law without a feedback controller was
discussed in I1].

The reason an impulse appears in the converged
control input can be easily understood by intuition. If the
initial plant state deviates from the desired one, there
will be a nonzero initial tracking error, which cannot be
suppressed by a bounded control input. Therefore, for
achieving perfect tracking despite an initial state
mismatch, a control with infinite magnitude should be
applied. Apparently, the above problem can be simply
solved by restricting @(s) to be proper. When @(s) is
proper, H(s) is also proper and v,(#) always has a finite

has an impulse at

initial value
2.(0) = lim H()(y40) — 5°(0)).

Hence, in a learning control scheme that adopts proper
filters, v.{0)=0 if either T(s) or &(s) is strictly proper

or y£0)=13%0).

In consequence, the above discussion shows that
filters in practical iterative learning controllers need to
be proper to generate feasible learmning control input.
Despite the theory allowing the use of improper learning
controllers, real iterative learning control systems
adopting improper filters may not yield tracking accuracy
as predicted by the theory because the control input
created by the theory includes an impulse.

Another subject to consider is the assumption of
invariant initial state of the plant. In derivation of (2)
and (3), it was assumed that the initial state of the plant
is invanant with respect to iteration. Actually, every
iterative learning control scheme needs some kind of
initial condition requirement, depending upon the type of
input update law. In practice, however, it is not always
possible to make the initial state of the plant completely
identical at each trial, and the measurement of plant
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output utilized by the leaming controller can be
contaminated by sensor noise. Hence, it is necessary to
analyze how misalignment in the initial state affects the
convergence property and system performance.

Suppose 8YYs)= YUs)— Y%s) and ||6Yly< S for

k=1,2,---. After some manipulations, we get
E,—E, =(P-QT)E, 1_E*)
1+GC6YO’“ Trec %
=(P—QD*(Ey—E.)
St p_ T .1
+ E(P QT) ( 1+ GC 8Y% iFac 3YOk—z‘+1)
And
|E,—Eilly < IP— QT I&IE,— Eull;

S i p
+ ’ZIHP_ QT”oo (”m 6Y0k_,- ”2

+irrige 8V h).

It can be assumed that |[P(s)ll < 1 because F(s) is

supposed to be a low-pass filter whose pass-band gain
is 1. Thus we get

|E,— EJl; < |IP—QTI%IE,— Eill;
N _ i 1
+2' 5 1P QT 1% 13 O

Now it follows that

. 200 max
lim [le(2) — e.(Dllz < 11—y
where

—lp— T
r=IP— QT and o=l izz -

As seen above, the converged error remains within a

“ball of radius 208 mx/(1—7) centered at e.(# in the L,

-norm sense. The bound of the ball can be made
arbitrarily small by reducing the variation of the initial
state. Furthermore, it also depends on the sensitivity
function of the feedback control system and 7. The
smaller the H.-—norm of the sensitivity function and ¥

are, the smaller the bound is. It is interesting that the
decrease of sensitivity leads to more robust learning
control system against the misalignment of the initial
state. From the standpoint of performance and
disturbance rejection in the feedback control system, it is
also desirable to reduce sensitivity.

4. Conclusions

Even though theory allows the use of an improper
learning controller, it may cause a critical problem when
applied to plants in real environments. Thus, it is
imperative to impose the properness constraint on the
iterative learning controller, not only for system
robustness to high-frequency noise but for feasible
control input as well. Additionally, we analyzed the effect
of the wvariable plant initial state on convergence
property. Though we only focused on SISO systems, it
is straightforward to extend the obtained results to
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MIMO systems.
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