• Title/Summary/Keyword: Iterative learning technique

Search Result 41, Processing Time 0.027 seconds

Control of Wafer Temperature Uniformity in Rapid Thermal Processing using an Optimal Iterative teaming Control Technique (최적 반복 학습 제어기법을 이용한 RTP의 웨이퍼 온도균일제어)

  • 이진호;진인식;이광순;최진훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.358-358
    • /
    • 2000
  • An iterative learning control technique based on a linear quadratic optimal criterion is proposed for temperature uniformity control of a silicon wafer in rapid thermal processing.

  • PDF

Output Tracking of Uncertain Fractional-order Systems via Robust Iterative Learning Sliding Mode Control

  • Razmjou, Ehsan-Ghotb;Sani, Seyed Kamal-Hosseini;Jalil-Sadati, Seyed
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1705-1714
    • /
    • 2018
  • This paper develops a novel controller called iterative learning sliding mode (ILSM) to control linear and nonlinear fractional-order systems. This control applies a combination structures of continuous and discontinuous controller, conducts the system output to the desired output and achieve better control performance. This controller is designed in the way to be robust against the external disturbance. It also estimates unknown parameters of fractional-order systems. The proposed controller unlike the conventional iterative learning control for fractional systems does not need to apply direct control input to output of the system. It is shown that the controller perform well in partial and complete observable conditions. Simulation results demonstrate very good performance of the iterative learning sliding mode controller for achieving the desired control objective by increasing the number of iterations in the control loop.

Realization of a neural network controller by using iterative learning control (반복학습 제어를 사용한 신경회로망 제어기의 구현)

  • 최종호;장태정;백석찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.230-235
    • /
    • 1992
  • We propose a method of generating data to train a neural network controller. The data can be prepared directly by an iterative learning technique which repeatedly adjusts the control input to improve the tracking quality of the desired trajectory. Instead of storing control input data in memory as in iterative learning control, the neural network stores the mapping between the control input and the desired output. We apply this concept to the trajectory control of a two link robot manipulator with a feedforward neural network controller and a feedback linear controller. Simulation results show good generalization of the neural network controller.

  • PDF

PID Type Iterative Learning Control with Optimal Gains

  • Madady, Ali
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • Iterative learning control (ILC) is a simple and effective method for the control of systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and derivative) type ILC update law for control discrete-time single input single-output (SISO) linear time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled system in current cycle is modified by applying the PID strategy on the error achieved between the system output and the desired trajectory in a last previous iteration. The convergence of the presented scheme is analyzed and its convergence condition is obtained in terms of the PID coefficients. An optimal design method is proposed to determine the PID coefficients. It is also shown that under some given conditions, this optimal iterative learning controller can guarantee the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of the proposed technique.

LMI-Based Synthesis of Robust Iterative Learning Controller with Current Feedback for Linear Uncertain Systems

  • Xu, Jianming;Sun, Mingxuan;Yu, Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.171-179
    • /
    • 2008
  • This paper addresses the synthesis of an iterative learning controller for a class of linear systems with norm-bounded parameter uncertainties. We take into account an iterative learning algorithm with current cycle feedback in order to achieve both robust convergence and robust stability. The synthesis problem of the developed iterative learning control (ILC) system is reformulated as the ${\gamma}$-suboptimal $H_{\infty}$ control problem via the linear fractional transformation (LFT). A sufficient convergence condition of the ILC system is presented in terms of linear matrix inequalities (LMIs). Furthermore, the ILC system with fast convergence rate is constructed using a convex optimization technique with LMI constraints. The simulation results demonstrate the effectiveness of the proposed method.

Identification and Multivariable Iterative Learning Control of an RTP Process for Maximum Uniformity of Wafer Temperature

  • Cho, Moon-Ki;Lee, Yong-Hee;Joo, Sang-Rae;Lee, Kwang-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2606-2611
    • /
    • 2003
  • Comprehensive study on the control system design for a RTP process has been conducted. The purpose of the control system is to maintain maximum temperature uniformity across the silicon wafer achieving precise tracking for various reference trajectories. The study has been carried out in two stages: thermal balance modeling on the basis of a semi-empirical radiation model, and optimal iterative learning controller design on the basis of a linear state space model. First, we found through steady state radiation modeling that the fourth power of wafer temperatures, lamp powers, and the fourth power of chamber wall temperature are related by an emissivity-independent linear equation. Next, for control of the MIMO system, a state space modeland LQG-based two-stage batch control technique was derived and employed to reduce the heavy computational demand in the original two-stage batch control technique. By accommodating the first result, a linear state space model for the controller design was identified between the lamp powers and the fourth power of wafer temperatures as inputs and outputs, respectively. The control system was applied to an experimental RTP equipment. As a consequence, great uniformity improvement could be attained over the entire time horizon compared to the original multi-loop PID control. In addition, controller implementation was standardized and facilitated by completely eliminating the tedious and lengthy control tuning trial.

  • PDF

Model-based iterative learning control with quadratic criterion for linear batch processes (선형 회분식 공정을 위한 이차 성능 지수에 의한 모델 기반 반복 학습 제어)

  • Lee, Kwang-Soon;Kim, Won-Cheol;Lee, Jay-H
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.148-157
    • /
    • 1996
  • Availability of input trajectories corresponding to desired output trajectories is often important in designing control systems for batch and other transient processes. In this paper, we propose a predictive control-type model-based iterative learning algorithm which is applicable to finding the nominal input trajectories of a linear time-invariant batch process. Unlike the other existing learning control algorithms, the proposed algorithm can be applied to nonsquare systems and has an ability to adjust noise sensitivity as well as convergence rate. A simple model identification technique with which performance of the proposed learning algorithm can be significantly enhanced is also proposed. Performance of the proposed learning algorithm is demonstrated through numerical simulations.

  • PDF

Optimal iterative learning control with model uncertainty

  • Le, Dang Khanh;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.743-751
    • /
    • 2013
  • In this paper, an approach to deal with model uncertainty using norm-optimal iterative learning control (ILC) is mentioned. Model uncertainty generally degrades the convergence and performance of conventional learning algorithms. To deal with model uncertainty, a worst-case norm-optimal ILC is introduced. The problem is then reformulated as a convex minimization problem, which can be solved efficiently to generate the control signal. The paper also investigates the relationship between the proposed approach and conventional norm-optimal ILC; where it is found that the suggested design method is equivalent to conventional norm-optimal ILC with trial-varying parameters. Finally, simulation results of the presented technique are given.

Optimal Learning Control Combined with Quality Inferential Control for Batch and Semi-batch Processes

  • Chin, In-Sik;Lee, Kwang-Soon;Park, Jinhoon;Lee, Jay H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.57-60
    • /
    • 1999
  • An optimal control technique designed for simultaneous tracking and quality control for batch processes. The proposed technique is designed by transforming quadratic-criterion based iterative learning control(Q-ILC) into linear quadratic control problem. For real-time quality inferential control, the quality is modeled by linear combination of control input around target qualify and then the relationship between quality and control input can be transformed into time-varying linear state space model. With this state space model, the real-time quality inferential control can be incorporated to LQ control Problem. As a consequence, both the quality variable as well as other controlled variables can progressively reduce their control error as the batch number increases while rejecting real-time disturbances, and finally reach the best achievable states dictated by a quadratic criterion even in case that there is significant model error Also the computational burden is much reduced since the most computation is calculated in off-line. The Proposed control technique is applied to a semi-batch reactor model where series-parallelreactions take place.

  • PDF

Collision-Free Trajectory Planning for Dual Robot Arms Using Iterative Learning Concept (反復 學習槪念을 利용한 두 臺의 로봇의 衝突回避 軌跡計劃)

  • 정낙영;서일홍;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 1991
  • A collision-free trajectory planning algorithm using an iterative learning concept is proposed for dual robot arms in a 3-D common workspace to accurately follow their specified paths with constant velocities. Specifically, a collision-free trajectory minimizing the trajectory error is obtained first by employing the linear programming technique. Then the total operating time is iteratively adjusted based on the maximum trajectory error of the previous iteration so that the collision-free trajectory has no deviation from the specified path and also that the operating time is near-minimal. To show the validity of the proposed algorithm, a numerical example is presented based on two planar robots.