• Title/Summary/Keyword: Iterative boundary element method

Search Result 57, Processing Time 0.023 seconds

An Interval Approach for Design and Analysis of Mechanical Systems with Uncertainties

  • Shin, Jae-Kyun;Li Chen;Jang, Woon-Geun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.5-14
    • /
    • 2002
  • This paper addresses the challenges of dealing with uncertainties based on interval analysis. An interval approach is proposed on the basis of Boundary Selection Method (BSM) for treating systems of linear interval equations in the presence of columnwise dependencies. An iterative procedure is developed for the problem solving where uncertainties are characterized in the form of interval quantities. An applied example is used to illustrate effectiveness and usefulness of the proposed approach. This new method can be applied for such circumstances that involve finite element analysis of structures, inverse dynamic analysis of mechanisms, and worst case design studies in the presence of the uncertainties.

Trimming Line Design using Incremental Development Method and Finite Element Inverse Method (점진 전개기법 및 유한요소 역해석법을 이용한 자동차 패널 트리밍 라인 설계)

  • Chung, W.J.;Park, C.D.;Song, Y.J.;Oh, S.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.445-452
    • /
    • 2006
  • In most of automobile body panel manufacturing, trimming process is generally performed before flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along manually chosen section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results of edge profile. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. In this study, new fast simulation-based method to find feasible trimming line is proposed. Finite element inverse method is used to analyze the flanging process because final shape after flanging can be explicitly defined and most of strain paths are simple in flanging. In utilizing finite element inverse method, the main obstacle is the initial guess generation for general mesh. Robust initial guess generation method is developed to handle genera] mesh with very different size and undercut. The new method develops final triangular mesh incrementally onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after finite element inverse method simulation. This method has many advantages since trimming line can be obtained in the early design stage. The developed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.

Vibration Analysis of Thick Orthotropic Plates Using Mindlin Plate Characteristic Functions (Mindlin판 특성함수를 이용한 직교이방성 후판의 진동해석)

  • LEE JONG-MOON
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.21-26
    • /
    • 2003
  • An iteractive Kantorovich method is presented for the vibration analysis of rectangular orthotropic thick plates. Mindlin plate characteristic functions are derived in general forms using the Kantorovich method. Initially, Timoshenko beam functions consistent with the boundary conditions of the plate were used. Through numerical calculations of natural fairs of appropriate models, it has been confirmed that the method presented is superior to the Rayleigh-Ritz analysis or the finite element analysis in both accuracy and computational efficiency.

A Study on the Efficient IFEM for Analyzing an Arbitrary-shaped Iris in Rectangular Waveguide (구형 도파관내 임의 형상 Iris 해석을 위한 효율적인 반복 유한 요소법에 관한 연구)

  • 박종국;김병성;남상욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1175-1181
    • /
    • 2001
  • An efficient hybrid method is proposed to analyze discontinuities in a rectangular waveguide. Only with a small number of meshes around a discontinuity, the typical finite element method is shown to give an exact solution through several iterative updates of the boundary conditions. To show the validity of the proposed method, a simple circular aperture in a rectangular waveguide is analyzed and its result is compared with FEBIM.

  • PDF

Cooling Flow Characteristics of an Impinging Liquid Jet Using ALE Finite Element Method (ALE 유한요소법에 의한 충돌 액체 분류 냉각 유동 특성 해석)

  • Sung, Jaeyong;Choi, Hyoung Gwon;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.43-57
    • /
    • 1999
  • The fluid flow and heat transfer in a thin liquid film are investigated numerically. The flow Is assumed to be two-dimensional laminar and surface tension is considered. The most important characteristics of this flow is the existence of a hydraulic jump through which the flow undergoes very sharp and discontinuous change. Arbitrary Lagrangian-Eulerian(ALE) method is used to describe moving free boundary and a modified SIMPLE algorithm based on streamline upwind Petrov-Galerkin(SUPG) finite element method is used for time marching iterative solution. The numerical results obtained by solving unsteady full Navier-Stokes equations are presented for planar and radial flows subject to constant wall temperature or constant wall heat flux, and compared with available experimental data. It Is discussed systematically how the inlet Reynolds and Froude numbers and surface tension affect the formation of a hydraulic jump. In particular, the effect of temperature dependent fluid properties is also discussed.

Nonlinear thermoelastic response of laminated composite conical panels

  • Joshi, R.M.;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.97-107
    • /
    • 2010
  • Nonlinear thermoelastic static response characteristics of laminated composite conical panels are studied employing finite element approach based on first-order shear deformation theory and field consistency principle. The nonlinear governing equations, considering moderately large deformation, are solved using Newton-Raphson iterative technique coupled with the adaptive displacement control method to efficiently trace the equilibrium path. The validation of the formulation for mechanical and thermal loading cases is carried out. The present results are found to be in good agreement with those available in the literature. The adaptive displacement control method is found to be capable of handling problems with multiple snapping responses. Detailed parametric study is carried out to highlight the influence of semicone angle, boundary conditions, radius-to-thickness ratio and lamination scheme on the nonlinear thremoelastic response of laminated cylindrical and conical panels.

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

Development of an Object-oriented Finite Element Model through Iterative Method Ensuring Independency of Elements (요소 독립성이 유지되는 반복해법에 의한 객체지향 유한요소모델 개발)

  • Lee, Han-Ki;Kim, Tae-Gon;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.115-125
    • /
    • 2012
  • Application of the Object-oriented Programming (OOP) method to the Finite Element Model (FEM) program has various strengths including the features of encapsulation, polymorphism and inheritance. However, this technique should be based upon a premise that the independency of the object method and data to be used is guaranteed. By attempting to apply the OOP to the FEM, existing researches go against the independency of the OOP which is an essential feature of the method. The reason is this: existing researches apply the OOP to modules in accordance with analysis procedures, although the data to be used is classified as an element unit in the FEM. Therefore, the required independency cannot be maintained as whole stiffness matrices and boundary conditions are combined together. Also, solutions are sought from analysis module after data is regrouped at the pre-processor, and their results are analyzed during the post-processor. As this is similar to a batch processing, it cannot use data at analysis, and recalculation should be done from the beginning if any condition is changed after the analysis is complete, which are limitations of the existing researches. This research implemented the Object-orientation of elements so that the three features of the OOP (i.e. encapsulation, polymorphism and inheritance) can be guaranteed and their independency maintained as a result. For this purpose, a model called 'Object-oriented Finite element Model ensuring the Independency of Elements (OFMIE)', which enables the analysis of targets through mutual data exchanges within instance, was developed. In conclusion, the required independency was achieved in the instance of the objected elements and the analysis results of previous conditions could be used for the analysis after changes. The number of repetitive calculations was reduced by 75 per cent through this gradual analysis processes.

Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming (One-Step Forming을 이용한 박판성형 해석에 관한 연구)

  • Jeong, Dong-Won;Lee, Sang-Je;Kim, Gwang-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.11-17
    • /
    • 1999
  • The objective of this paper is to introduce very fast but still stable solution using finite element procedures, and it has been used in an iterative mode for product design applications. A lot of numerical techniques have been developed to deal with the material, geometric and boundary condition non-linearities occurred in the stamping process. One of them, the One-Step FEM is very efficient and useful tool for a design and trouble-shooting in various stamping processes. In this method, the mathod, the material is assumed to deform directly from the initial flat blank to the final configuration without any intermediate steps. The formulation is based on the deformation theory of plasticity and the upper bound theorem. As a result of the calculations, the initial blank shape is obtained, together with the material flow, strains and thickness distribution in the part.

  • PDF

An adaptive meshfree RPIM with improved shape parameter to simulate the mixing of a thermoviscoplastic material

  • Zouhair Saffah;Mohammed Amdi;Abdelaziz Timesli;Badr Abou El Majd;Hassane Lahmam
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.239-249
    • /
    • 2023
  • The Radial Point Interpolation Method (RPIM) has been proposed to overcome the difficulties associated with the use of the Radial Basis Functions (RBFs). The RPIM has the following properties: Simple implementation in terms of boundary conditions as in the Finite Element Method (FEM). A less expensive CPU time compared to other collocation meshless methods such as the Moving Least Square (MLS) collocation method. In this work, we propose an adaptive high-order numerical algorithm based on RPIM to simulate the thermoviscoplastic behavior of a material mixing observed in the Friction Stir Welding (FSW) process. The proposed adaptive meshfree RPIM algorithm adapts well to the geometric and physical data by choosing a good shape parameter with a good precision. Our numerical approach combines the RPIM and the Asymptotic Numerical Method (ANM). A numerical procedure is also proposed in this work to automatically determine an improved shape parameter for the RBFs. The efficiency of the proposed algorithm is analyzed in comparison with an iterative algorithm.