• Title/Summary/Keyword: Iterative Design Algorithm

Search Result 238, Processing Time 0.042 seconds

Design of phase-only diffractive pattern elements using a two-stage iterative Fourier transform algorithm (2단계 iterative Fourier transform 알고리즘을 이용한 위상형 회절무늬소자 설계)

  • 정필호;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.47-57
    • /
    • 2000
  • A two-stage iterative Fourier transform algorithm, based on hybrid input-output algorithm and new Pnoise algorithm, is used to design continuous and quantized phase-only diffractive pattern elements which produce arbitrary given intensity patterns via Fraunhofer diffraction. Numerical results for two $128\times128$ binary patterns and two grayscale patterns are compared with those of other algorithms. It is found that the algorithm yields better signal-to-noise ratio and even better uniformity with slightly lower diffraction efficiency than other algorithms. We investigated the dependence of performance on parameters used in the algorithm, size of noise region, and the number of phase levels for quantized elements. In the case of quantized phase elements, the size of noise region plays a greater role in determining the performance of the algorithm than given intensity pattern itself. tself.

  • PDF

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

A study on the Convergence of Iterative Fourier Transform Algorithm for Optimal Design of Diffractive Optical Elements (회절광학소자의 최적 설계를 위한 Iterative Fourier Transform Algorithm의 수렴성에 관한 연구)

  • Kim, Hwi;Yang, Byung-Choon;Park, Jin-Hong;Lee, Byoung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.298-311
    • /
    • 2003
  • Iterative Fourier transform algorithm, (IFTA) is tile iterative numerical algorithm for the design of the diffractive optical elements (DOE), by which the phase distribution of a DOE converges on a local optimal solution. The convergence of IFTA depends on several factors 3s initial phase distribution, the structure of the degree of freedom on the observation plane, and the values of internal parameters. In this paper, we analyze tile dependence of the convergence of IFTA on an internal parameter of IFTA, the relaxation parameter, and propose a new hybrid scheme of genetic algorithm and IFTA to obtain more accurate solution.

An Improvement Algorithm for the Image Compression Imaging

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.30-41
    • /
    • 2020
  • Lines and textures are natural properties of the surface of natural objects, and their images can be sparsely represented in suitable frames such as wavelets, curvelets and wave atoms. Based on characteristics that the curvelets framework is good at expressing the line feature and wavesat is good at representing texture features, we propose a model for the weighted sparsity constraints of the two frames. Furtherly, a multi-step iterative fast algorithm for solving the model is also proposed based on the split Bergman method. By introducing auxiliary variables and the Bergman distance, the original problem is transformed into an iterative solution of two simple sub-problems, which greatly reduces the computational complexity. Experiments using standard images show that the split-based Bergman iterative algorithm in hybrid domain defeats the traditional Wavelets framework or curvelets framework both in terms of timeliness and recovery accuracy, which demonstrates the validity of the model and algorithm in this paper.

Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Space (직교배열표를 이용한 이산공간에서의 최적화 알고리즘 개발)

  • Yi, Jeong-Wook;Park, Joon-Seong;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.408-413
    • /
    • 2001
  • The structural optimization is carried out in the continuous design space or discrete design space. Methods for discrete variables such as genetic algorithms are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete design space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions for constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

  • PDF

The Lambert W Function in the Design of Minimum Mean Square-Error Quantizers for a Laplacian Source (램버트 W 함수를 사용한 라플라스 신호의 최소 평균제곱오차 양자화)

  • 송현정;나상신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.524-532
    • /
    • 2002
  • This paper reports that the Lambert W function applies to a non-iterative design of minimum mean square-error scalar quantizers for a Laplacian source. Specifically, it considers a non-iterative design algorithm for optimum quantizers for a Laplacian source; it finds that the solution of the recursive nonlinear equation in the non-iterative design is elegantly expressed in term of the principal branch of the Lambert W function in a closed form; and it proves that the non-iterative algorithm applies only to exponential or Laplacian sources. The contribution of the paper is in the reduction of the time needed for the design and the increased accuracy in resulting quantization points and thresholds, because the algorithm is non-iterative and the Lambert W function can be evaluated as accurately as desired. Also, numerical results show how optimal quantization distortion converges monotonically to the Panter-Dite constant and help derive an approximation formula for the key parameters of optimum quantizers.

An Airbag Design for the Safety of an Occupant using the Orthogonal Array (직교배열표를 이용한 승용차 에어백의 설계)

  • Park, Y.S.;Lee, J.Y.;Park, G.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.62-76
    • /
    • 1995
  • The safety analysis becomes very essential in the crash environment with the growth of automobile industry. Recently, an airbag system is required to protect the occupant. The effects of an airbag can be evaluated exactly from the barrier or sled test which is quite expensive. The airbag system in a passenger car is analyzed with the occupant analysis program. The modeling of the passenger car including an airbag is established and the results are verified by comparisons with real crash tests. However, the solution of an airbag design can not be obtained easily with the conventional method such as an optimization due to the nonlinearity and complexity of the problem. An iterative design algorithm using the orthogonal array is proposed to overcome the difficulties. The design trend of an airbag is recommended to minimize the injury of an occupant with the proposed design algorithm and the results are discussed.

  • PDF

An Iterative Learning Controller Design for Performance Improvement of Multi-Motor System (복수전동기 구동 시스템의 성능 향상을 위한 반복학습제어기 설계)

  • Lee H.H;Kim J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.584-587
    • /
    • 2003
  • Iterative learning control is an approach to improve the transient response of systems that operate repetitively over a fixed time interval. It is useful for the system where the system output follows the different type input, in case of design or modeling uncertainty In this paper, we introduce the concept of iterative learning control and then apply the learning control algorithm for multi-motor system for performance Improvement.

  • PDF

Iterative Reliability-Based Modified Majority-Logic Decoding for Structured Binary LDPC Codes

  • Chen, Haiqiang;Luo, Lingshan;Sun, Youming;Li, Xiangcheng;Wan, Haibin;Luo, Liping;Qin, Tuanfa
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.339-345
    • /
    • 2015
  • In this paper, we present an iterative reliability-based modified majority-logic decoding algorithm for two classes of structured low-density parity-check codes. Different from the conventional modified one-step majority-logic decoding algorithms, we design a turbo-like iterative strategy to recover the performance degradation caused by the simply flipping operation. The main computational loads of the presented algorithm include only binary logic and integer operations, resulting in low decoding complexity. Furthermore, by introducing the iterative set, a very small proportion (less than 6%) of variable nodes are involved in the reliability updating process, which can further reduce the computational complexity. Simulation results show that, combined with the factor correction technique and a well-designed non-uniform quantization scheme, the presented algorithm can achieve a significant performance improvement and a fast decoding speed, even with very small quantization levels (3-4 bits resolution). The presented algorithm provides a candidate for trade-offs between performance and complexity.

Design of Turbo Codes with Efficient Iterative Decoding Stop Criterion (효율적인 반복중단 알고리즘을 갖는 터보부호 설계)

  • 심병섭;정대호;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.28-31
    • /
    • 2003
  • In this paper, it proposes the efficient iterative decoding stop criterion using the variance value of LLR. It is verifying that the proposal iterative de-coding stop criterion can be reduced the average iterative decoding number. The proposal algorithm md hardware synthesize to use the Synopsys Tool, performance validations perform through the ModelSim.

  • PDF