• Title/Summary/Keyword: Iteration Method

Search Result 1,145, Processing Time 0.033 seconds

Estimation of Distance and Direction for Tracking of the Moving Object

  • Kang, Sung-Kwan;Park, Jong-An
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.557-557
    • /
    • 2000
  • Tracking of the moving object, which is realized by the computer vision, is used for military and industrial fields. It is the application technique with imply complicated processing for understanding the input images. But, in these days, the most moving object tracking algorithms have many difficult problems. A typical problem is the increase of calculation time depending on target number. For this reason, there are many studies to solve real time processing problems and errors for background environmental change. In this paper, we used optical flow which is one of moving object tracking algorithms. It represents vector of the moving object. Optical flow estimation based on the regularization method depends on iteration method but it is very sensitive the noise. We proposed a new method using the Combinatorial Hough Transform (CHT) and Voting Accumulation in order to find optimal constraint lines. Also, we used the logical operation in order to release the operation time. The proposed method can easily and accurately extract the optical flow of moving object area and the moving information. We have simulated the proposed method using the test images. This images are included the noise. Experimental results show that the proposed method get better flow and estimate accurately the moving information.

  • PDF

Passive Millimeter-Wave Image Deblurring Using Adaptively Accelerated Maximum Entropy Method

  • Singh, Manoj Kumar;Kim, Sung-Hyun;Kim, Yong-Hoon;Tiwary, U.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.414-417
    • /
    • 2007
  • In this paper we present an adaptive method for accelerating conventional Maximum Entropy Method (MEM) for restoration of Passive Millimeter-Wave (PMMW) image from its blurred and noisy version. MEM is nonlinear and its convergence is very slow. We present a new method to accelerate the MEM by using an exponent on the correction ratio. In this method the exponent is computed adaptively in each iteration, using first-order derivatives of deblurred image in previous two iterations. Using this exponent the accelerated MEM emphasizes speed at the beginning stages and stability at later stages. In accelerated MEM the non-negativity is automatically ensured and also conservation of flux without additional computation. Simulation study shows that the accelerated MEM gives better results in terms of RMSE, SNR, moreover, it takes only about 46% lesser iterations than conventional MEM. This is also confirmed by applying this algorithm on actual PMMW image captured by 94 GHz mechanically scanned radiometer.

  • PDF

Wave Models and Experimental Studies of Beam-plate-beam Coupled Systems for a Mid-frequency Analysis (중주파수 대역 해석을 위한 Beam-plate-beam 연성 구조물의 웨이브 모형 연구와 시험적 규명)

  • Yoo, Ji-Woo;Thompson, D.J.;Ferguson, N.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.121-129
    • /
    • 2007
  • There has been much effort to find suitable methods for structural analysis in the mid-frequency region where traditional low frequency methods have increasing uncertainties whilst statistical energy analysis is not strictly applicable. Systems consisting of relatively stiff beams coupled to flexible plates have a particularly broad mid-frequency region where the beams support only a few modes whilst the plate has a high modal density and modal overlap. A system of two parallel beams coupled to a plate is investigated based on the wave method, which is an approximate method. Muller's method is utilised for obtaining complex roots of a dispersion wave equation, which does not converge in the conventional wave method based on a simple iteration. The wave model is extended from a single-beam-plate system, to a plate with two identical beams which is modelled using a symmetric-antisymmetric technique. The important hypothesis that the coupled beam wavenumber is sufficiently smaller than the plate free wavenumber is experimentally verified. Finally, experimental results such as powers and energy ratios show the validity of the analytical wave models.

An Analysis of Axisymmetric Cylindrical Shell by the Leading Matrix Method (인도행렬에 의한 축대칭 원통형 쉘의 해석)

  • 이관희;박준용;김우중
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.193-201
    • /
    • 2004
  • The aim of this study is focused on getting an almost exact solution which is the simplicity and exactness of an axisymmetrically loaded cylindrical shell. This method replaces the finite element method which is a very powerful tool for analysis of any kind of structure which has an arbitrary shape, but is still a numerical analysis. Instead, this study uses the method of distribution of end actions which is a kind of iteration technique to implement the leading matrix method. The distribution and carry-over factors of a cylinder are calculated by the theory of a differential equation of a beam on an elastic foundation. The results are satisfactory when this method is applied to a cylinder that is subjected to a concentrated load and hydrostatic pressure when compared with the BEF analogy separately.

A Study on the Resistance Test Method for Planning Hull Model using the High Speed Towing Carriage (무인고속전차를 이용한 활주선 모형의 저항시험 기법 연구)

  • Lee, Young-Gill;Ha, Yoon-Jin;Jeong, Kwang-Leol;Chae, Soon-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.349-355
    • /
    • 2014
  • The resistance test of a high speed craft such as planing ship is performed with a high speed towing carriage instead of ordinary towing carriage because of the speed limitation. In the resistance test using high speed towing carriage, the model ship is fixed to the carriage to restrain the running attitude for enough measuring time. Such method is called fixed model test method. In the fixed model test method, to get the appropriate running attitude, the model test is iteratively repeated until the trim moment and lift force are close to zero. In this research, trim free model test method is investigated to reduce the number of iteration. And, the limitation of towing speed range in the trim free model test method is investigated.

A Study on a Load Flow calculation for Preserved Jacobian Matrix's elements except diagonal terms (Jacobian 행렬의 비 대각 요소를 보존시킬 수 있는 조류계산에 관한 연구)

  • Moon, Yong-Hyun;Lee, Jong-Gi;Choi, Byoung-Kon;Park, Jeong-Do;Ryu, Hun-Su
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.311-315
    • /
    • 1998
  • Load Flow calculation methods can usually be divided into Gauss-Seidel method, Newton-Raphson method and decoupled method. Load flow calculation is a basic on-line or off-line process for power system planning, operation, control and state analysis. These days Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In addition to that, Newton-Raphson method tends to fail to converge when system loading is heavy and system has a large R/X ratio. In this paper, matrix equation is used to make algebraic expression and then to solve load flow equation and to modify above defects. And it preserve certain part of Jacobian matrix to shorten the time of calculation. Application of mentioned algorithm to 14 bus, 39 bus, 118 bus systems led to identical result and the number of iteration got by Newton-Raphson method. The effect of time reduction showed about 28%, 30%, at each case of 39 bus, 118 bus system.

  • PDF

A Quick Hybrid Atmospheric-interference Compensation Method in a WFS-less Free-space Optical Communication System

  • Cui, Suying;Zhao, Xiaohui;He, Xu;Gu, Haijun
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.612-622
    • /
    • 2018
  • In wave-front-sensor-less adaptive optics (WFS-less AO) systems, the Jacopo Antonello (JA) method belongs to the model-based class and requires few iterations to achieve acceptable distortion correction. However, this method needs a lot of measurements, especially when it deals with moderate or severe aberration, which is undesired in free-space optical communication (FSOC). On the contrary, the stochastic parallel gradient descent (SPGD) algorithm only requires three time measurements in each iteration, and is widely applied in WFS-less AO systems, even though plenty of iterations are necessary. For better and faster compensation, we propose a WFS-less hybrid approach, borrowing from the JA method to compensate for low-order wave front and from the SPGD algorithm to compensate for residual low-order wave front and high-order wave front. The correction results for this proposed method are provided by simulations to show its superior performance, through comparison of both the Strehl ratio and the convergence speed of the WFS-less hybrid approach to those of the JA method and SPGD algorithm.

Comparison of Collimator Choice on Image Quality of I-131 in SPECT/CT (I-131 SPECT/CT 검사의 에서 조준기 종류에 따른 영상 비교 평가)

  • Kim, Jung Yul;Kim, Joo Yeon;Nam-Koong, Hyuk;Kang, Chun Goo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • Purpose: I-131 scan using High Energy (HE) collimator is generally used. While, Medium Energy (ME) collimator is not suggested to use in result of an excessive septal penetration effects, it is used to improve the sensitivities of count rate on lower dose of I-131. This research aims to evaluate I-131 SPECT/CT image quality using by HE and ME collimator and also find out the possibility of ME collimator clinical application. Materials and Methods: ME and HE collimator are substituted as Siemens symbia T16 SPECT/CT, using I-131 point source and NEMA NU-2 IQ phantom. Single Energy Window (SEW) and Triple Energy Windows (TEW) are applied for image acquisition and images with CTAC and Scatter correction application or not, applied different number of iteration and sub set are reconstructed by IR method, flash 3D. By analysis of acquired image, the comparison on sensitivities, contrast, noise and aspect ratio of two collimators are able to be evaluated. Results: ME Collimator is ahead of HE collimator in terms of sensitivity (ME collimator: 188.18 cps/MBq, HE collimator: 46.31 cps/MBq). For contrast, reconstruction image used by HE collimator with TEW, 16 subset 8 iteration applied CTAC is shown the highest contrast (TCQI=190.64). In same condition, ME collimator has lower contrast than HE collimator (TCQI=66.05). The lowest aspect ratio for ME collimator and HE collimator are 1.065 with SEW, CTAC (+) and 1.024 with TEW, CTAC (+) respectively. Conclusion: Selecting a proper collimator is important factor for image quality. This research finding tells that HE collimator, which is generally used for I-131 scan emitted high energy ${\gamma}$-ray is the most recommendable collimator for image quality. However, ME collimator is also applicable in condition of lower dose, lower sensitive if utilizing energy window, matrix size, IR parameter, CTAC and scatter correction appropriately.

  • PDF

An Optimization Approach for Localization of an Indoor Mobile Robot (최적화 기법을 사용한 실내 이동 로봇의 위치 인식)

  • Han, Jun Hee;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.253-258
    • /
    • 2016
  • This paper proposes a method that utilizes optimization approach for localization of an indoor mobile robot. Bayesian filters which have been widely used for localization of a mobile robot use many control parameters to take the uncertainties in measurement and environment into account. The estimation performance depends on the selection of these parameter values. Also, the performance of the Bayesian filters deteriorate as the non-linearity of the motion and measurement increases. On the other hand, the optimization approach uses fewer control parameters and is less influenced by the non-linearity than the Bayesian methods. This paper compares the localization performance of the proposed method with the performance of the extended Kalman filter to verify the feasibility of the proposed method. Measurements of ranges from beacons of ultrasonic satellite to the robot are used for localization. Mahalanobis distance is used for detection and rejection of outlier in the measurements. The optimization method sets performance index as a function of the measured range values, and finds the optimized estimation of the location through iteration. The method can improve the localization performance and reduce the computation time in corporation with Bayesian filter which provides proper initial location for the iteration.

Implementation of Stopping Criterion Algorithm using Variance Values of LLR in Turbo Code (터보부호에서 LLR 분산값을 이용한 반복중단 알고리즘 구현)

  • Jeong Dae-Ho;Kim Hwan-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.149-157
    • /
    • 2006
  • Turbo code, a kind of error correction coding technique, has been used in the field of digital mobile communication system. As the number of iterations increases, it can achieves remarkable BER performance over AWGN channel environment. However, if the number of iterations is increased in the several channel environments, any further iteration results in very little improvement, and requires much delay and computation in proportion to the number of iterations. To solve this problems, it is necessary to device an efficient criterion to stop the iteration process and prevent unnecessary delay and computation. In this paper, it proposes an efficient and simple criterion for stopping the iteration process in turbo decoding. By using variance values of LLR in turbo decoder, the proposed algerian can largely reduce the average number of iterations without BER performance degradation in all SNR regions. As a result of simulation, the average number of iterations in the upper SNR region is reduced by about $34.66%{\sim}41.33%$ compared to method using variance values of extrinsic information. the average number of iterations in the lower SNR region is reduced by about $13.93%{\sim}14.45%$ compared to CE algorithm and about $13.23%{\sim}14.26%$ compared to SDR algorithm.