• Title/Summary/Keyword: Iteration

Search Result 1,885, Processing Time 0.036 seconds

Crack analysis of reinforced concrete members with and without crack queuing algorithm

  • Ng, P.L.;Ma, F.J.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Due to various numerical problems, crack analysis of reinforced concrete members using the finite element method is confronting with substantial difficulties, rendering the prediction of crack patterns and crack widths a formidable task. The root cause is that the conventional analysis methods are not capable of tracking the crack sequence and accounting for the stress relief and re-distribution during cracking. To address this deficiency, the crack queuing algorithm has been proposed. Basically, at each load increment, iterations are carried out and within each iteration step, only the most critical concrete element is allowed to crack and the stress re-distribution is captured in subsequent iteration by re-formulating the cracked concrete element and re-analysing the whole concrete structure. To demonstrate the effectiveness of the crack queuing algorithm, crack analysis of concrete members tested in the literature is performed with and without the crack queuing algorithm incorporated.

Fraud Detection in E-Commerce

  • Alqethami, Sara;Almutanni, Badriah;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.200-206
    • /
    • 2021
  • Fraud in e-commerce transaction increased in the last decade especially with the increasing number of online stores and the lockdown that forced more people to pay for services and groceries online using their credit card. Several machine learning methods were proposed to detect fraudulent transaction. Neural networks showed promising results, but it has some few drawbacks that can be overcome using optimization methods. There are two categories of learning optimization methods, first-order methods which utilizes gradient information to construct the next training iteration whereas, and second-order methods which derivatives use Hessian to calculate the iteration based on the optimization trajectory. There also some training refinements procedures that aims to potentially enhance the original accuracy while possibly reduce the model size. This paper investigate the performance of several NN models in detecting fraud in e-commerce transaction. The backpropagation model which is classified as first learning algorithm achieved the best accuracy 96% among all the models.

NUMERICAL SOLUTIONS OF NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS BY USING MADM AND VIM

  • Abed, Ayoob M.;Younis, Muhammed F.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.189-201
    • /
    • 2022
  • The aim of the current work is to investigate the numerical study of a nonlinear Volterra-Fredholm integro-differential equation with initial conditions. Our approximation techniques modified adomian decomposition method (MADM) and variational iteration method (VIM) are based on the product integration methods in conjunction with iterative schemes. The convergence of the proposed methods have been proved. We conclude the paper with numerical examples to illustrate the effectiveness of our methods.

SINGLE STEP REAL-VALUED ITERATIVE METHOD FOR LINEAR SYSTEM OF EQUATIONS WITH COMPLEX SYMMETRIC MATRICES

  • JingJing Cui;ZhengGe Huang;BeiBei Li;XiaoFeng Xie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1181-1199
    • /
    • 2023
  • For solving complex symmetric positive definite linear systems, we propose a single step real-valued (SSR) iterative method, which does not involve the complex arithmetic. The upper bound on the spectral radius of the iteration matrix of the SSR method is given and its convergence properties are analyzed. In addition, the quasi-optimal parameter which minimizes the upper bound for the spectral radius of the proposed method is computed. Finally, numerical experiments are given to demonstrate the effectiveness and robustness of the propose methods.

MODEL FOR DESIGN MANAGEMENT IN COLLABORATIVE ENVIRONMENT USING DESIGN STRUCTURE MATRIX AND DESIGN PARAMETERS' INFORMATION

  • Salman Akram;Jeonghwan Kim;Jongwon Seo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1307-1312
    • /
    • 2009
  • Design is an act based on multidisciplinary information. The involvement of various stakeholders makes it difficult to process, plan, and integrate. Iteration is frequent in most of the engineering design and development projects including construction. Design iterations cause rework, and extra efforts are required to get the optimal sequence and to manage the projects. The simple project management techniques are insufficient to fulfill the requirements of integrated design. This paper entails two things: design structure matrix and design parameters' information based model. The emphasis has been given to optimal sequence and crucial iteration using design structure matrix analysis technique. The design projects have been studied using survey data from industry. The optimal sequence and crucial iterations results have been utilized for proposed model. Model integrates two things: information about produced- required key design parameters and information of design changes during the design process. It will help to get familiar with Design management in order to fulfill contemporary needs.

  • PDF

A Study on Architecture Improving Performance of openCV (openCV 의 성능 향상을 위한 아키텍처 연구)

  • Cho, Yeongpil;Heo, Ingoo;Kim, Yongjoo;Paek, Yunheung
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.18-20
    • /
    • 2011
  • 최근 컴퓨터 비전의 활용 영역이 증가함에 따라 컴퓨터 비전의 대표적인 라이브러리인 openCV의 사용 또한 증가하는 추세이다. openCV 에는 컴퓨터 비전 알고리즘의 특성상 massive 한 연산을 수행해야 하는 부분이 상당수 존재한다. 본 논문은 이러한 연산량의 부담을 줄임으로써 openCV 의 성능 향상을 위한 아키텍처를 연구한다. openCV 의 massive 한 연산은 라이브러리 함수에 있는 내부 반복문에서 발생하기 때문에, 본 논문은 반복문의 특성을 분석하고 이를 가속할 수 있는 아키텍처가 무엇인지 연구한다. 결론적으로 반복문의 각 iteration 이 독립적일 경우에는 SIMD (Single Instruction Multiple Data)와 SIMT (Single Instruction Multiple Thread)이 적합하며 반복문의 각 iteration 이 의존적일 경우에는 MIMD (Multiple Instruction Multiple Data)를 바탕으로 하는 파이프라인 아키텍처가 적합하다.

Innovative Liquid Damper for Wind-Induced Vibration of Buildings: Performance after 4 Years of Operation, and Next Iteration

  • Ghisbain, Pierre;Mendes, Sebastian;Pinto, Marguerite;Malsch, Elisabeth
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.117-121
    • /
    • 2021
  • In 2016, an innovative liquid damper system was installed on the roof of a 35-story modular building in Brooklyn, NY to mitigate wind-induced movement of the structure. The new damper presented several advantages over traditional pendulum, liquid column or sloshing dampers, including lower fabrication and maintenance costs, modularity, and the flexibility to be tuned to a wider range of frequencies. The performance of the system was monitored on a regular basis over the past four years and found adequate, with only minor re-tuning and maintenance operations needed. Based on the experience and data gained through this project, a second iteration of the damper was developed. Called Hummingbird, the improved system further mitigates maintenance and tuning concerns, while allowing significant space savings.

CAPUTO-FABRIZIO FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS VIA NEW DHAGE ITERATION METHOD

  • NADIA BENKHETTOU;ABDELKRIM SALIM;JAMAL EDDINE LAZREG;SAID ABBAS;MOUFFAK BENCHOHRA
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.3_4
    • /
    • pp.211-222
    • /
    • 2023
  • In this paper, we study the following hybrid Caputo-Fabrizio fractional differential equation: 𝐶𝓕α𝕯θϑ [ω(ϑ) - 𝕱(ϑ, ω(ϑ))] = 𝕲(ϑ, ω(ϑ)), ϑ ∈ 𝕵 := [a, b], ω(α) = 𝜑α ∈ ℝ, The result is based on a Dhage fixed point theorem in Banach algebra. Further, an example is provided for the justification of our main result.

Fast Iterative Image Restoration Algorithm

  • Moon, J.I.;Paik, J.K.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.67-76
    • /
    • 1996
  • In the present paper we propose two new improved iterative restoration algorithms. One is to accelerate convergence of the steepest descent method using the improved search directions, while the other accelerates convergence by using preconditioners. It is also shown that the proposed preconditioned algorithm can accelerate iteration-adaptive iterative image restoration algorithm. The preconditioner in the proposed algorithm can be implemented by using the FIR filter structure, so it can be applied to practical application with manageable amount of computation. Experimental results of the proposed methods show good perfomance improvement in the sense of both convergence speed and quality of the restored image. Although the proposed methods cannot be directly included in spatially-adaptive restoration, they can be used as pre-processing for iteration-adaptive algorithms.

  • PDF

On the Interaction of a Solitary Wave and a Wave-Packet (고립파와 파도패킷의 상호작용)

  • Jong Eon Kim;Taek Soo Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.341-350
    • /
    • 2023
  • In this paper, numerical experiments are performed to examine the collision between a solitary wave and a wave-packet (dispersive wave) in shallow water. We attempt to introduce the improved Boussinesq equation governing the experiments, which is solved by using a semi-analytical approach, called Pseudo-parameter Iteration method(PIM). Using various numerical experiments, we have observed that the wave-packet (propagating dispersive wave) experiences a phase shift after collision with a solitary wave. This phenomenon may be considered as a nonlinear wave-wave interaction in shallow water.